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ABSTRACT

Many acoustic source mapping methods exist to perform noise source localization and
quantification and appear to be powerful tools for acoustic diagnosis in industrial applica-
tions. Two classes of methods have known many developments in the last few decades: de-
convolution algorithms combined with beamforming (CLEAN, DAMAS, etc) and inverse
methods such as the Equivalent Source Method (ESM) and the Generalized Inverse Beam-
forming (GIB). In this paper, a special attention will be paid to the use of inverse methods
in complex acoustic environments. Recently, Suzuki has demonstrated the applicability of
the GIB to the study of aerodynamic sound sources [25], highlighting comparable perfor-
mances to the existing deconvolution techniques. On the other hand, an iterative version of
the ESM has been proposed in the context of acoustic imaging in closed spaces, at INSA
Lyon [22].
This paper provides a theoretical and experimental comparison between two inverse meth-
ods: the iterative ESM and the GIB using various benchmark problems and aeroacoustic
experimental data. The experimental set-up consists of a steel rod placed in the potential
core of a rectangular jet inside an open-jet anechoic wind tunnel. It will be shown that both
methods are based on similar mathematical formulations although they were developed
for different application fields. Reconstruction performances of the algorithms in terms of
localization and quantification will be discussed as well as their computational efficiency.

1



5th Berlin Beamforming Conference 2014 Oudompheng et al.

1 INTRODUCTION

Improving localization and quantification in complex acoustic environments has become a cur-
rent challenge for the acoustic source identification community because of the complex nature
of the sources (aeroacoustic sources) and the uncertainties about the propagation medium (re-
verberation, refraction). In these days, source identification methods are Near-Field Acoustical
Holography [20], Beamforming based methods: deconvolution methods of Beamforming re-
sults (DAMAS [2], CLEAN-SC [23]), advanced time-domain Beamforming techniques [7],
robust Capon [6, 18]. Few inverse methods requiring mathematical inversion of the transfer
matrix have been developed and demonstrated as feasible to deal with complex acoustic imag-
ing issues, due to the strong sensitivity of inverse methods to modelling errors and measurement
noise. Recently, Suzuki proposed the Generalized Inverse Beamforming (GIB) which considers
the source identification inverse problem as a L1 norm problem and which models the source dis-
tribution as a linear combination of monopole sources and dipole sources. Many experimental
results have confirmed its applicability to aeroacoustic source mapping (laboratory experiments
[27], jet noise [8], jet-flap interaction noise [25]). In context of acoustic measurements in en-
closed spaces, Pereira developed an iterative version of the Equivalent Source Method (iESM)
during his thesis [22] based on an iterative resolution of the acoustic inverse problem in the least
square sense. Our interest in this paper is to provide a theoretical and an experimental compari-
son between GIB and the iESM in order to discuss the differences of these so close algorithms.
Indeed, even though the two methods were developed in two different fields of acoustics, they
share a common mathematical formulation. They use an iterative scheme to compute an effi-
cient source reconstruction in complex acoustic environment, both in terms of localization and
quantification of acoustic sources. Inverse methods such as GIB and iESM have the benefit
to simultaneously backpropagate the measured acoustic energy to every grid points, these grid
points are called equivalent acoustic sources and describe the acoustic radiation of an acoustic
radiating object. Thus, the proof of their feasibility in aeroacoustics will provide an alternative
to deconvolution Beamforming based algorithms whose physical interpretation still remains un-
certain.
The paper is organized as follows. Section 2 presents the algorithms of both methods and
compares them through mathematical aspects. Section 3 compares the source reconstruction
performances of the methods for benchmark problems described by Suzuki in [25]. Section 4
examines the practical capabilities of the methods with the experimental set-up of a rod in the
potential core of a rectangular jet inside an open-jet anechoic wind tunnel. Section 5 finally
gives some conclusions and perspectives for the use of inverse methods for aeroacoustic source
identification.

2 OUTLINE OF THEORY

2.1 Formulation of the acoustic source identification problem

The GIB method and the iESM method consider a discretized version of the direct acoustic
problem. Assuming that it is possible to define a virtual acoustic source distribution which
radiates the same acoustic field as the real sources, this distribution can be discretized in N
equivalent acoustic sources. Generally speaking, the equivalent sources are elementary sources
which represent a likely complex structure, the parameters of equivalent sources being deter-
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mined such that they match some prescribed or measured data. This principle is at the basis of
the Equivalent Source Method (ESM), or wave superposition method, which was introduced to
the acoustical community by Koopmann et al. [16]. It was initially applied to acoustic radia-
tion problems from arbitrarily shaped sources, a historical overview of ESM and its variants in
acoustics may be found in [19]. Given M measuring points of a microphone array and assuming
a free-field propagation, the direct acoustic problem is expressed by the following linear system,
using a matrix notation:

p = Gq+n, (1)

where p is a M× 1 vector of complex measured acoustic pressure, q the volume velocity of
N×Ntype unknown equivalent sources, n accounts for the M× 1 vector of measurement noise
and G is a M× (N×Ntype) matrix of Green’s functions. Ntype is the number of multipole types
considered for the description of each equivalent sources. We precise that the complex vector p
may represent, for instance, a spectrum vector as returned from an eigen decomposition of the
cross-spectral matrix, a snapshot of a Short Time Fourier transform (STFT) of pressure signals
or eventually the complex pressure vector estimated using a reference sensor.

In practice, the number of equivalent sources used for representing the source is usually
higher than the number of available measurements, i.e., M < N×Ntype. This leads to an under-
determined and ill-posed problem, in the sense that it has an infinite number of solutions and
the solution is not stable with respect to, even small, uncertainties on the measured data. Ad-
ditional a priori information is thus required in order to find physically meaningful solutions.
This information could, for instance, be related to the energy of the solution (e.g. Tikhonov
regularization [26]), to its sparsity at the reconstruction basis or at some other representation
basis [3, 5, 21].

2.2 Generalized Inverse Beamforming (GIB)

Let the estimated cross spectral matrix of the measured acoustic pressures p be noted Λ, it
is square and hermitian so its orthogonal decomposition can be carried out by an eigenvalue
decomposition:

Λ = E[ppH ] = UΛΣΛUH
Λ (2)

where UΛ is the unitary eigenvector matrix of Λ of dimension M×M and ΣΛ the eigenvalue
diagonal matrix. From this decomposition, the M eigenmodes are defined as:

For m ∈ [1,M], pm =
√

σmum (3)

where pm is a M× 1 vector, σm is the mth greatest eigenvalue of Λ and um the column of UΛ

related to σm. um is an eigenvector of Λ and represents a set of coherent signals, two distinct
eigenvectors are orthogonal.

The goal of GIB algorithm is to find the source distribution that recovers each eigenmode
which is consistent to an acoustic pressure signal. In order to identify the source distribution
corresponding to an eigenmode, an inverse problem is formulated introducing the transfer ma-
trix G linking the calculation grid (the set of equivalent sources) to the microphone array:

For m ∈ [1,M], pm = Gqm (4)
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where qm is the complex equivalent source amplitude vector of dimension N×Ntype×1, related
to the mth eigenmode . In this study, monopole equivalent sources and two types of dipole
equivalent sources will be considered, Ntype = 3. The two types of dipole equivalent sources
are dipole sources in the x direction and dipole sources in the y direction. At this step of the
algorithm, it is important to point out that the set of coherent signals corresponding to a mode of
the cross spectral matrix does not refer to a set of physical sources but to a set of virtual sources
which satisfy a property of orthogonality. As a result, the source distributions qm equivalent to
the most energetic modes of the cross spectral matrix should be summed in energy to represent
the global system.

Least square inverse solution tends to provide smooth and blur acoustic source maps in terms
of localization whereas most sources are compact. To improve the resolution and to recover
the compactness of reconstructed sources, Suzuki proposes to use a penalization factor on the
Lp,0≤ p≤ 1 norm of the target solution of the inverse problem. The Lp-minimization problem
can be formulated as:

minimize
{
‖pm−Gqm‖2

2 +η
2‖qm‖p

p
}
, (5)

Lp,0 ≤ p ≤ 1 norm choice is made to enhance the sparsity of the target solution of the in-
verse problem, i.e. it minimizes the number of equivalent sources with non zero amplitude.
In the whole article, p = 1 is considered because it ensures the convexity of the minimization
problem, i.e. the existence of a unique optimal solution. To solve this L1-norm inverse prob-
lem, Suzuki first proposed a Newton-Raphson algorithm [24] which sometimes gives unstable
results (irrelevant estimated source amplitude, etc). More recently, the IRLS algorithm (Iter-
atively Reweighted Least Squares [14]) has been preferred for its more stable results [25], it
consists of computing the least square solution and introducing a weighting matrix W at each
iteration. At the nth iteration of the algorithm, for the mth eigenmode, the weighting matrix is
equal to the equivalent source amplitudes q̂(n−1)

i,m , i ∈ [1,N×Ntype] which were estimated at the
previous iteration:

For (i, j) ∈ [1,N×Ntype]× [1,N×Ntype], W (n)
i j,m = δi j|q̂(n−1)

i,m | (6)

where δi j is the Kronecker symbol. The solution of Eq. (5) with respect to IRLS algorithm can
be expressed as:

For m ∈ [1,M], q̂(n)
m = W(n)

m GH
[
GW(n)

m GH +η
2I
]−1

pm (7)

In Suzuki’s version of GIB, the regularization parameter η2 is determined by a diagonal load-
ing technique similarly to the methodologies employed in Capon algorithms [6] [18]. Here,
the regularization parameter η2 is arbitrarily chosen equal to 1% of the greatest eigenvalue
of GW(n)

m GH . To save computational time, at the nth iteration of the algorithm, only the
β n×N×Ntype estimated equivalent sources with the greatest amplitude modulus are used for
the next iteration.

As mentioned above, the estimated source amplitude vector qm related to each eigenmode pm
and to the greatest eigenvalues σm are summed in order to get an estimate of the whole source
distribution:

q = ∑
m

qm (8)
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Two stopping criteria are defined to end the algorithm. The first criterion indicates the con-
vergence of the algorithm, it consists of stopping the iteration process when the L1 norm of the
equivalent source amplitude vector has increased from an iteration to the next one. It is written
as:

N

∑
i=1
|q(n)

i,m|= ‖q̂
(n)
m ‖1 > ‖q̂

(n−1)
m ‖1 (9)

The second stopping criterion concerns the minimum number of equivalent sources. Indeed, as
mentioned above, at each iteration, only the equivalent sources with the highest amplitudes are
used for the next iteration. In this study, the iteration process ends when the following condition
is met at the nth iteration:

2M > β
n×N×Ntype (10)

This criterion means that the implementation of the GIB is here restricted to underdetermined
cases, i.e. M < β n×N ×Ntype at the nth iteration. Suzuki suggests the possibility to solve
the overdetermined cases [25], when β n×N×Ntype < M, in order to let the iteration process
converge and meet the first stopping criterion. Benchmark cases of section 3 and experimental
data presented in section 4 have been processed by GIB by accounting for overdetermined cases
but it has not improved physical interpretation of the results. Consequently, the choice was made
to limit this study to underdetermined problems. Moreover, satisfying Eq. (10) also is a means
to keep a sufficient number of equivalent acoustic sources in order to reduce the sparsity of the
results, thus a means to hope a better physical interpretation.

2.3 Iterative Equivalent Source Method (iESM)

In a least square sense, the resolution of the problem in Eq. (1) consists of the minimization of
a residual error (between measured and reconstructed pressure) plus an additional constraint on
the energy of the solution:

minimize
{
‖p−Gq‖2

2 +η
2‖q‖2

2
}

(11)

The solution of this least square problem can be expressed using the generalized inverse because
the transfer matrix is rectangular:

q̂ = G†p (12)

where •† denotes the Moore-Penrose pseudo-inverse. In most acoustic studies, the number of
microphones is limited which implies that the inverse problem Eq. (4) often is underdetermined:
the number of grid points is higher than the number of measuring points, i.e. M < N×Ntype,
and the transfer matrix is ill-conditioned. The algorithm is implemented with monopole transfer
functions so Ntype = 1. An underdetermined problem does not have a unique solution so a
regularization technique is required to find the optimal solution of Eq. (4). In acoustics, the
Tikhonov regularization is generally used [26]:

q̂ = GH [GGH +η
2I
]−1 p (13)

Inspired on the application of the ESM for acoustic imaging purposes within a closed space,
additional information on the problem was introduced in the form of a weighting matrix [22].
The motivation was to correct for the positioning of the acoustic microphone array inside the
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enclosure, such that those equivalent sources which are closer to the array are not favored on the
minimization. In that context, the weighting was related to the distance between each equivalent
source and the center of the array. The introduction of the above a priori information leads to
the following minimization problem:

minimize
{
‖p−Gq‖2

2 +η
2‖Wq‖2

2
}
, (14)

with the square diagonal matrix W of dimensions N×N. The above problem is recognized as
the general form of Tikhonov regularization in the literature [11]. If W is invertible such that
WW−1 = I, which is the case for any diagonal matrix with non-zero diagonal entries, we can
modify the above minimization problem by introducing the transformation q = W−1q̃ and thus
arrive at the following minimization problem:

minimize
{
‖p−GW−1q̃‖2

2 +η
2‖q̃‖2

2
}
, (15)

which is promptly recognized as the standard-form of Tikhonov regularization, whose solution
can be written as

q̃ = G̃H(G̃G̃H +η
2I)−1p, (16)

where G̃ is defined as G̃ = GW−1. The singular value decomposition of the modified transfer
matrix is written as:

G̃ = UdScVH (17)

where U is the M×M matrix of left singular vectors of G̃, dSc the diagonal matrix of singular
values of G̃ and V is the N×N matrix of right singular vectors of G̃. The solution of Eq. (16)
is conveniently expressed in terms of the singular value decomposition of G̃ (Eq. (17)) which
yields:

q̃ = V(dSc2 +η
2I)−1dScUHp, (18)

with η a unknown regularization parameter. The reconstructed source field is then simply given
by the back transformation:

q̂ = W−1q̃. (19)

The above idea may be implemented in an iterative manner, for instance, by defining a
weighting matrix W depending on the equivalent source distribution estimated at a previous
step, such that:

W (n)
i j = δi j

∣∣∣q̂(n−1)
i

∣∣∣−1
, (20)

where δi j is the Kronecker delta and n is the index of the actual solution. The estimate of the
equivalent source distribution is returned by iteratively solving an updated quadratic function
at each iteration. The iteration process is stopped when a convergence criterion is met. This is
done here by evaluating the difference between consecutive estimates of the equivalent source
distribution such as:

ε = 10log
(〈∣∣∣q̂(n)i /q̂(n−1)

i

∣∣∣〉) , (21)

with the operator 〈•〉 denoting a spatial average. The iteration process may be stopped, for
instance, when ε is inferior to 0.1 dB. In practice, in order to avoid zero valued weight coeffi-
cients in Eq. (20), a truncation on q̂(n−1) is imposed at each iteration such that only those values
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within a threshold of 100 dB below the maximum of q̂(n−1) are kept.
The estimation of an optimal regularization parameter η in Eq. (18) is a crucial step in order

to achieve a good estimate of the reconstructed field. Several ad hoc techniques to perform this
task, such as the L-curve [13], the Generalized Cross Validation (GCV) [9] or the Normalized
Cumulative Periodgram (NCP) [12], have been applied in acoustics and vibration problems
[4, 10, 15, 17]. The above techniques and a recent method derived from a Bayesian framework
[1] are extensively evaluated in [22] by means of numerical and experimental validations in
acoustics. The superiority of the Bayesian regularization criterion to acoustic inverse problems
is demonstrated, this criterion being a robust alternative for this kind of problems. The Bayesian
estimate of the regularization parameter is returned by the minimization of the following cost
function:

J(η2) =
M

∑
k=1

ln
(
s2

k +η
2)+(M−2) ln

[
1
M

(
M

∑
k=1

|yk|2

s2
k +η2

)]
, (22)

where sk is the k-th singular value as returned from the decomposition in Eq. (17) and yk is the
k-th element of vector

y = UHp, (23)

where U is a matrix whose columns are the left singular vectors from the decomposition in Eq.
(17). In practice, the minimization is done by defining a grid of potential values of η2 and
choosing the one which minimizes the cost function in Eq. (22).

2.4 Theoretical comparison

As seen in the previous sections, the GIB and the iESM algorithms are based on an itera-
tive scheme which allows source reconstructions with an improved spatial resolution. Indeed,
weighting the transfer matrix by the estimated amplitudes of equivalent sources of the previ-
ous iteration enhances the sparsity of the source distribution because only equivalent sources
of high amplitudes remain in the end of the algorithm. It is the key principle of the Iteratively
Reweighted Least Square algorithm [14] to compute sparse reconstruction.

The use of multipole transfer functions in the GIB algorithm is justified by the aeroacoustic
environment of Suzuki’s case study. Indeed, in an aeroacoustic measurements, most acoustic
sources have a dipole radiation pattern, especially aeroacoustic sources associated with an in-
teraction between a sharp end and a flow. Even though no condition prevents the integration of
multipole transfer functions in the iESM algorithm, the requirement to build a method to quan-
tify acoustic sources has motivated the use monopole transfer function volume velocity-pressure
[22].

The last but not least difference is clearly the strategy of regularization. Indeed, in the Eq.
(7) Suzuki recommends a resolution by the generalized inverse with the determination of the
regularization parameter by a diagonal loading method [25]. The regularization imposed for the
iterative ESM is based on the estimation of a regularization parameter which depends on how
the measured data is coupled to the inverse problem. This is done here by the minimization
of the cost function in Eq. (22) derived from a Bayesian formalism. Both methodologies have
the same goal which is to improve the conditioning of the transfer matrix G to be inverted
(see Eq. (4)). Another difference remains in the numerical computation of the solution at each
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GIB algorithm [25] iESM algorithm [22]

1. Formulation of
direct problem

pm = Gqm,
where pm is the mth mode of Λ

p = Gq+n,
where p is a vector of complex acoustic

pressure

2. Solution of the
problem

Lp-norm minimization
q̂m = argmin

qm
‖pm−Gqm‖2

2 +η2‖qm‖p
p

with p = 1

General-form Tikhonov regularization
q̂ = argmin

q

{
‖p−Gq‖2

2 +η2‖Wq‖2
2
}

with W invertible and setting
q = W−1q̃ G̃ = GW−1 G̃ svd

= UdScVH

a. Estimated
sources q̂(n)

m = W(n)
m GH

[
GW(n)

m GH +η2I
]−1

pm
q̃ = V(dSc2 +η2I)−1dScUHp

q̂(n) = W−1q̃

b. Weighting
coefficients

∀(i, j) ∈ [1,N×Ntype]
2, W (n)

i j,m = δi j

∣∣∣q̂(n−1)
i,m

∣∣∣ ∀(i, j) ∈ [1,N]2, W (n)
i j = δi j

∣∣∣q̂(n−1)
i

∣∣∣−1

c. Regularization
parameter

η2 = 1% of the greatest eigenvalue of
GW(n)

m GH
η2 estimated from the data by minimization

of cost function in Eq. (22)

d. Stopping
criteria

Convergence criterion:
‖q̂(n)

m ‖1 > ‖q̂(n−1)
m ‖1

Underdetermined problems:
2M > β n×N×Ntype

Convergence criterion:
ε = 10log

(〈∣∣∣q̂(n)i /q̂(n−1)
i

∣∣∣〉)< 0.1dB

Table 1: A schematic comparison of the GIB algorithm and the iESM algorithm

iteration. The iterative ESM is based on a singular value decomposition of a weighted transfer
matrix, while the generalized inverse beamfoming computes a regularized pseudo-inverse of the
transfer matrix. A schematic representation of both algorithms is presented in Table 1.

3 SIMULATIONS : BENCHMARK PROBLEMS

In this section, both methods are compared on benchmark configurations defined by Suzuki
[25], these simulated test cases are presented in order to confirm the theoretical capability to
identify complex source type such as: distributed sources, coherent sources and dipole sources.
All spatial dimensions are normalized by the wavelength and all the speeds are normalized by
the acoustic wave celerity c. To satisfy this normalization property, the choice was made not to
normalize those parameters but to work at the frequency f = 340Hz so that the wavenumber
is equal to k = 2π and the wavelength is equal to λ = 1m with an acoustic celerity value of
c = 340m.s−1.

3.1 Problem geometries

The microphone array considered for these benchmark problems is an array of 60 microphones
which are distributed on six arms corresponding to a portion of logarithmic spiral duplicated six
times by rotation around the center of the array. The array is located on the z-axis at coordinates
z = 10m, the origin of the cartesian coordinates is at the center of the equivalent source plane.
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The microphone array geometry is represented by black circles in Fig. 1.
The calculation grid is a discretized plane whose points represent equivalent acoustic sources, it
is a 6m×6m square grid with a grid spacing of 0.25m (625 calculation points). The calculation
grid is represented by red circle in Fig. 1.
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Figure 1: Diagram of the problem geometries: the microphone array geometry in black circle
and the equivalent source plane in red circles.

3.2 Acoustic transfer functions

The acoustic transfer functions used for the computation of the results for the benchmark prob-
lems and the experiments are of three types: monopole pressure-volume velocity transfer func-
tions, monopole pressure-pressure transfer functions and dipole pressure-pressure transfer func-
tions. The iESM algorithm recovers equivalent sources of acoustic volume velocity from the
pressure measured by the microphone array. Thus, the pressure-volume velocity transfer func-
tion [22] linking a source point rn to a measuring point rm is computed using the following
expression:

gmono,vol(rm | rn) = jρck
exp(− jk‖−−→rnrm‖)

4π‖−−→rnrm‖
(24)

where the convention − j is assumed in this study and ρ the density of the fluid. The recon-
struction of equivalent sources of acoustic volume velocity is used for localization results in the
following and also useful for the quantification. The transfer matrix G of the Eq. (18) is a set
of monopole transfer functions gmono,vol .

On the other hand, the GIB algorithm aims to reconstruct equivalent sources of acoustic
pressure taking into account the eventual dipole directivity of the equivalent sources. Hence,
the expression of the monopole pressure-pressure transfer function linking a source point rn to
a measuring point rm is [25]:

gmono(rm | rn) =
exp(− jk‖−−→rnrm‖)

4π‖−−→rnrm‖
(25)

and the dipole pressure-pressure transfer function linking a source point rn to a measuring point
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rm characterizing a dipole point source making an angle θ with the x axis is [25]:

gdip(rm | rn) =
−−→rnrm.(cosθ ,sinθ ,0)

(−1+ jk‖−−→rnrm‖)exp(− jk‖−−→rnrm‖)
2k‖−−→rnrm‖3 (26)

Noting gdip,x the transfer matrix associated with dipole oriented in the x direction (θ = 0◦) and
gdip,y the transfer matrix associated with dipole oriented in the y direction (θ = 90◦), the transfer
matrix G used in Eq. (7) contains transfer functions gdip,x as well as transfer functions gdip,x in
order to allow the GIB algorithm to discriminate monopole and dipole equivalent sources.

Let PGIB,x−dip be the complex amplitude vector of the estimated dipole equivalent sources
in the x direction and let PGIB,y−dip be the complex amplitude vector of the estimated dipole
equivalent sources in the y direction. In section 3 and in section 4, the noise maps which
are labeled “GIB dipole part” are superpositions of a pressure map whose levels are set to be
20log10

(
P2

GIB,x−dip(rn)+P2
GIB,y−dip(rn)

)
,∀n ∈ [1,N] and of green arrows. A green arrow at

the location rn makes an angle θ̂(rn) with the x axis (Eq. (27)) and has a length equal to
10log10

(
P2

GIB,x−dip(rn)+P2
GIB,y−dip(rn)

)
.

θ̂(rn) = arctan
(

PGIB,y−dip(rn)

PGIB,x−dip(rn)

)
(27)

Mathematically, θ̂(rn) = 0◦ when PGIB,x−dip(rn) = 0 which means that only an x-dipole exists
at rn and θ̂(rn) = 90◦ when PGIB,y−dip(rn) = 0 which means that only an y-dipole exists at
rn. Furthermore, it has been verified that any simulated dipole sources with an orientation θ

generates a green arrow with orientation θ̂ = θ in the GIB estimate.

3.3 Localization results

The elementary case defined by Suzuki [25] of a single monopole was tested and validated the
ability of the two methods to localize a point source with a great resolution. In the following,
critical cases are examined in order to evaluate the limitations of each method. Two benchmark
cases are considered: a coherent pair of a monopole and a dipole and a distributed source.
For these test cases, only localization results are used for the comparison of both methods,
consequently the acoustic quantities reconstructed are the real part of the volume velocity for
the iESM and the pressure for the GIB using the acoustic transfer functions explicited in the
previous subsection.

The first simulated case is the case of two coherent sources: a monopole source located at
(−1m,0m,0m) and a y-dipole source located at (+1m,0,0) as represented by the red spots in
the background of Fig. (2). The coherence between both sources is ensured by simulating
them in phase. According to Fig. 2(a) and Fig. 2(b), both algorithms manage to localize the
monopole source with a good resolution. Concerning the dipole source, the iESM algorithm
reconstructing equivalent sources of acoustic volume velocity, the result is the juxtaposition of
two point sources in phase opposition centered in the position of the dipole source (Fig. 2(a)).
On the other hand, the GIB method recovers the localization and the orientation of the dipole
source (green arrows in Fig. 2(c)) by taking into account dipole transfer functions in its in-
version process. Thus, this test case highlights the theoretical capability of both algorithms
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Figure 2: Comparison of noise-source maps of a monopole source located at (+1m,0m,0m)
and a y-dipole source located at (−1m,0,0) which are both coherent.

to identify dipole sources although in a complex environment the use of monopole equivalent
source of volume velocity will be of limited interest because it splits point dipole sources into
two point monopole sources. The monopole source and the dipole source are localized by both
methods, which demonstrates the localization performance of the methods against source co-
herence. For this case, only one mode of the cross spectral matrix is energetic and the iESM
computes its equivalent source distribution of in 12 iterations, whereas the GIB algorithm real-
ized 27 iterations.

The second simulated case is the case of a distributed source modelled as a line of twelve co-
herent monopole sources with an inclination of 30◦ in the cartesian plane as represented by the
red spots in the background of Fig. 3. Regarding Figs. 3(a) and 3(b), the two algorithms manage
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Figure 3: Comparison of noise-source maps of a distributed source with an inclination of 30◦

relative to the x direction.

to localize the line source. However, it can be noted that both methods tend to enforce the spatial
sparsity when reconstructing the distribution of equivalent sources because of the iterative struc-
ture of the algorithms and the weighting by the estimated amplitude of the equivalent sources
calculated from the previous result. This is one of the limitation of the L1-norm reconstruction
algorithms because they provide no physical solution in presence of distributed sources. Fig.
3(c) shows that little energy is assigned to the dipole part of the equivalent sources during the
processing of GIB, the amplitudes of the dipole part of the estimated equivalent sources are
20dB smaller than the amplitudes of the estimated equivalent sources of the monopole part.
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In consequence the inverse algorithm using monopole transfer function and dipole function is
able to distribute the energy according to the correct source type with a good dynamic range.
Concerning computational efficiency, only one mode of the cross spectral matrix is energetic
and the iESM computes its equivalent source distribution using 21 iterations, whereas the GIB
algorithm realized 27 iterations. The GIB iterative process stops at 27 iterations because of the
stopping criteria of Eq . (10), it justifies why the GIB result (Fig. (3(b))) is less sparse than the
iESM result (Fig. (3(a))).

To conclude, those simulations consolidate the theoretical high performances of inverse meth-
ods for the localization of complex sources, the next section deals with their performances for
the processing of measured data. Although the iESM seems to be limited in resolution for the
localization of dipole sources, there is no restriction to implement the iESM algorithm using
dipole transfer function. The enhancement of spatial resolution of the noise maps should not
be performed regardless of the validity the assumption of a sparse source distribution, other-
wise the algorithms will provide no physical results. Moreover, for every benchmark cases, the
iESM method processes less iterations than the GIB which supports the hint in subsection 2.4
about the optimality of Tikhonov regularization for finding the regularization parameter at each
iteration.

4 EXPERIMENTAL ILLUSTRATION

An experimental application of the Generalized inverse beam-forming and the iterative ESM in
an academic aeroacoustic experiment is presented in this section. The experiment consists of
an open-jet anechoic wind tunnel at the Ecole Centrale de Lyon (ECL). The airflow speed was
measured by a pitot tube and is equal to 40 m/s for the experimental results shown here. Two
side plates extending the nozzle are used in order to fix obstacles on the flow. A planar array of
54 pressure microphones is placed outside the flow at a distance of 34.5 cm and normal to the
flow direction. A 6mm diameter rod is placed in between the two side plates, in the potential
core of the rectangular jet.

A distribution of elementary sources is positioned on a plane parallel to the flow and passing
through the rod. This fictitious source plane extends the side plates and has a dimension of 80
cm x 68 cm with a grid spacing of 2 cm. It is assumed that the propagation between elementary
sources and the microphone array is in free-field, the effects introduced by the side plates (re-
flections, diffraction) are thus not taken into account in the model. A distribution of monopoles
is used for the iterative ESM, while a distribution of monopoles and dipoles for the generalized
inverse beam-forming. Acoustic imaging results are computed for a frequency band centered
at 1400 Hz, which corresponds to a Strouhal number Sr = f0d/U∞ = 0.21, where d is the rod
diameter and U∞ the free stream velocity.

The results for both methods are shown in Fig. 4. It can be seen that the iterative ESM
identifies a source at the midspan of the rod and slightly stretched normally to the rod. The
generalized inverse beam-forming returns a monopole contribution around 10 dB above the
dipole contribution. The monopole part shows a reconstructed source slightly to the left of the
rod and concentrated at its midspan. Dipole components are also identified at the midspan of
the rod and oriented perpendicularly to the stream direction, towards the spanwise direction (see
Fig. 4(c)).

Although one should normally expect sources distributed along the rod span, both methods
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Figure 4: Acoustic maps integrated over 1340 Hz to 1460 Hz. The two side plates and the rod
are also sketched on the figures. The air flow direction is from left to right.

identify rather concentrated sources at midspan. The reason for this observation is still not very
clear and requires further investigation. The confinement effect introduced by the side plates
(such as reflections or diffraction of acoustic waves), may be a possible explanation, since they
are not taken into account in the model. The above is currently being evaluated by means of
numerical approaches such as FEM and BEM.

5 CONCLUSIONS

A comparison between two techniques dedicated to acoustic imaging has been presented in this
paper. Despite being proposed for different application scenario, it is shown that they share a
similar mathematical formulation. Generalized inverse beam-forming imposes a relatively se-
vere regularization at each iteration, while the iterative ESM seeks an optimal data dependent
regularization. Consequently, it is shown that the iterative ESM normally requires fewer iter-
ations in order to compute localization results with reasonable spatial resolution. It is shown,
however, that over iteration produces very sparse solutions which may be difficult to interpret in
practice. The experimental characterization of the acoustic sources generated by a rod placed in
an open jet wind tunnel has been presented in the last part. The results of both methods indicate
sources located at the proximities of the rod, although concentrated at the midspan. The instal-
lation effects introduced by the side plates is currently being investigated in order to estimate
its influence on the acoustical imaging results.
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