
BeBeC-2014-09

COMPUTATIONAL OPTIMIZATION OF A TIME-DOMAIN
BEAMFORMING ALGORITHM USING CPU AND GPU

Johannes Stier, Christopher Hahn, Gero Zechel and Michael Beitelschmidt
Technische Universität Dresden, Institute of Solid Mechanics,

Chair of Dynamics and Mechanism Design
Marschnerstraße 30, 01307 Dresden

ABSTRACT

In 2010, a special time-domain beamforming algorithm was presented at the Berlin
Beamforming Conference [3]. This algorithm is primarily designed for the sound source
localization on moving objects with known velocity (e.g. freight trains). By determining
the object trajectory, the acoustic map’s quality can be improved with respect to the Doppler
effect.

The bottleneck of the algorithm is the time-consuming computational evaluation. Al-
though computational effiency was considered in the algorithm’s first implementation, it
can take on hour or more to calculate an acoustic map for a passing train on a regular per-
sonal computer. There are several factors which affect the evaluation time, e.g. sampling
rate, train speed or the train’s length.

This paper mainly focusses on the computational implementation of the time-domain
beamforming algorithm using CPU (Central Processing Unit) and GPU (Graphics Process-
ing Unit). In general, the implementation on a CPU is rather straight foward if common
parallelization libraries are used (e.g. OpenMP), offering only a few variation opportuni-
ties. The realizable speed-up is proportional to the number of physical cores in a CPU, and
can attain a factor of 8 on recent workstations. Implementing the beamforming algorithm
on a GPU with CUDA (Compute Unified Device Architecture) is more complicated and re-
quires substantial knowledge of the GPU’s processor architecture. Nevertheless, speed-ups
of 30 times or even more compensate the high implementation effort.

Additionally, a modification of the algorithm according to [3] is presented. Specific
calculation coefficients called ”beamfactors” are introduced, which represent the shading
factors in time-domain beamforming. Precomputing those factors before beamforming can
reduce the evaluation time by a factor of 2, regardless of the computational implementation
and the computer system used. Although the beamfactors-algorithm offers a sufficient
reduction of computational costs, it has been parallelized on CPU and GPU as well.

1



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

1 INTRODUCTION

Beamforming associated with a microphone array is a powerful tool to locate sound sources.
Generally, beamforming can be applied in frequency or time domain. When locating sound
sources on moving objects, beamforming must be applied in the time domain due to frequency
shifts caused by the Doppler effect. Knowing the object’s trajectory eases the necessary De-
Dopplerization.

In 2010, a special time-domain beamforming algorithm was presented, involving the object’s
velocity to consider the Doppler effect [3]. The algorithm presented is primarily applied to lo-
cate sound sources on (freight) trains, whose motion can be determined very easily. To locate
the sound sources on the base of the data recorded by a microphone array, the object is rasterized
by a grid of hypothetical monopole sources. For each pixel in the grid, the signal of the hypo-
thetical monopole is reconstructed by tracking the pixel over a certain time period, determined
by the microphone array used, and applying beamforming. Afterwards, the reconstructed signal
is analyzed by Discrete Fourier Transform (DFT) to get the frequency spectrum, which is often
filtered by octave bands and converted to a sound pressure level for each octave. The result is
a set of acoustic maps, one per octave, being colorized images representing the sound pressure
level of each pixel. By differences in the sound pressure level, and thus color differences, the
object’s sound sources are revealed.

Although, computational efficiency was taken into account and discussed in [3], creating
the acoustic maps for a regular freight train is very time-consuming. For instance, evaluat-
ing the measurement of a freight train with 110 m of length, traveling at 76 km h−1, measured
with a sampling frequency of 100 kHz and a desired acoustic map resolution of 0.1 m takes
6 h on a state-of-the-art personal computer. Besides accuracy considerations, the evaluation
(computation) time is a high impact factor to allow the microphone array, in combination with
beamforming, to be an effective acoustic analyzing tool. Therefor, a great demand on reducing
the computation time arises. Because of the structure of the time-domain beamforming algo-
rithm, there is much potential for computational optimization using advanced parallelization
techniques.

Before describing the approaches developed and techniques applied to reduce the computa-
tional time of time-domain beamforming in Sec. 3.1, the most important fundamentals of the
special beamforming algorithm are outlined in Sec. 2.

2 TIME-DOMAIN BEAMFORMING FOR MOVING SOURCES

Being one of the main elements of the sound locating tool microphone array, the signal process-
ing algorithm beamforming mainly influences the tool’s effectiveness. According to [3], the
origin for the following explanations is the well known equation for time-domain beamforming
on moving sound sources with known trajectory:

pn(t) =
1
M

M−1

∑
m=0

wm,n(t) · pm(t +∆tm,n(t)). (1)

2



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

The moving hypothetical monopole source’s signal pn(t) at pixel n is reconstructed by time-
shifting the M microphone signals pm(t) by

∆tm,n(t) =
rm,n(t)

c
, (2)

multiplying them with the weight factor

wm,n(t) =
rm,n(t)

r0
, (3)

and summing them up. The weighting factor wm,n(t) and time-shift ∆tm,n(t) depend on the
time-dependent euclidean distance rm,n(t) between microphone m and pixel n. c is the speed of
sound and r0 the reference distance to determine the sound sources’ sound pressure level1.

Because of the continuous time variable t, Eq. (1) is not suitable for a direct computational
implementation. A discrete time, ”digital”, time-domain beamforming equation must be derived
by sampling the continuous time variable with t = k ·∆T :

pn[k] =
1
M

M−1

∑
m=0

wm,n[k] · pm[k+
∆tm,n[k]

∆T
]. (4)

∆T is the reciprocate of the sampling frequency fs. Of course, the weighting factor wm,n[k]
and time shift ∆tm,n[k] have to be regarded in discrete time as well. Obviously, because of the
discrete time variable k being an integer, a conflict arises of summing k with the time-shift nor-
malized ∆tm,n[k]

∆T being a real number. From the computational point of view, this would require
to access the microphone data array (via a memory address) at a real numbered position, which
is of course not possible. According to [1], interpolation is required to overcome inaccuracies
when transforming exact delays to integer values.

In [3], linear interpolation between the time steps

∆km,n[k] = b
∆tm,n[k]

∆T
c and ∆km,n[k]+1 (5)

is used to approximate the exact time delay to reduce inaccuracies. In this case, b·c indicates
rounding down to the nearest integer value. Furthermore, introducing the coefficients

am,n[k] =
rm,n[k]
r0 · c∗

· (rm,n[k]−brm,n[k]c) (6)

and

bm,n[k] =
rm,n[k]
r0 · c∗

· (1− rm,n[k]+ brm,n[k]c) , (7)

1For a detailed description see [3]

3



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

to allow interpolation, Eq. (4) can be rewritten as

pn[k] =
1
M

M−1

∑
m=0

(am,n[k] · pm[k+∆km,n[k]]+bm,n[k] · pm[k+∆km,n[k]+1]) . (8)

The speed of sound c in m s−1 is converted to the speed of sound in m/sample c∗. Equation (4)
represents digital time-domain beamforming with linear interpolation for moving sources, being
the base for all following explanations.

3 COMPUTATIONAL OPTIMIZATION

3.1 Digital Time-Domain Beamforming from the Computational Point of View

Setting up an algorithm on the base of Eq. (8), that processes all pixel N of the evaluation
grid to calculate the acoustic maps in octaves Aoct by reconstructing the hypothetical source
signals, results in Alg. 1. In addition to the beamforming algorithm (Li. 2 to Li. 8), further
signal processing steps like windowing, frequency analysis, band filtering and sound pressure
level calculation must be considered to complete the calculation of the acoustic maps (Li. 9 to
Li. 11). Those steps are well known and are not evaluated in detail.

For the following explanations, the loop in Li. 1 is supposed to be processed serially. For all
pixel N, the hypothetical monopole source in pixel n is tracked over the time interval [le,n, lx,n]
and the source’s signal pn[k] is reconstructed according to Eq. (8). le,n and lx,n are determined
by the microphone array’s geometry. After the signal has been reconstructed, the frequency
spectrum Pn is calculated, octave band filtered and sound pressure level Lp,oct for each band are

Algorithm 1: Digital time-domain beamforming according to Eq. (8), serial and parallel
implementation on CPU

Data: microphone signals pm[k]
Result: acoustic map Aoct

1 for n = 0 to N−1 do (in parallel)
2 initialize pn[k] = 0
3 for l = le,n to lx,n do
4 for m = 0 to M−1 do
5 calculate am,n[l], bm,n[l] and ∆km,n[l]
6 calculate pm,n[l]
7 add pm,n[l] to pn[l]

8 divide pn[l] by M

9 window pn[k]
10 calculate Pn for pn[k]
11 calculate Lp,oct,n from Pn
12 assign Lp,oct,n to An,oct

4



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

calculated. The result is an acoustic map for each octave, being a colorized representation of
the octave sound pressure level for all pixel.

Implementing Alg. 1 computationally is straightforward, it only takes little effort to transfer
the algorithm to program code. Analyzing the algorithm’s structure reveals three ”for” loops,
each being an iteration over a defined number of elements. As the experienced programmer
knows, loops, more precisely nested loops, can be very time-consuming operations when being
executed, depending on the number of loop counts. In this case, computation time is mainly
influenced by the number of

• pixel N in the acoustic map, determined by the object length and height and the desired
acoustic map resolution,

• time steps L = lx,n− le,n to reconstruct the signal for, determined by the object velocity
and sampling rate,

• microphones M used in the microphone array.

Deriving the algorithm’s order results in O(N ·L ·M).
Figure 1 and Fig. 2 confirm the influence of number of pixels N and time steps to process L

on the computation time2. In the evaluation results shown in Fig. 1, all impact factors besides
the number of pixel N were constant. The result is an increasing computation time by a constant
factor of 10 when N increases by the same factor. Figure 2 shows the computation time for an
evaluation with all impact factors being constant besides the velocity. In this case, the compu-
tation time decreases by the reciprocate of increasing velocity. A more detailed investigation of
all other impact factors on computation time is not necessary because of their linear influence.

The results presented in Fig. 1 and Fig. 2 also evidence the great demand on reducing the
computation time. Locating sound sources on slow and long freight trains with high sampling
rates and a sufficient resolution according to the microphone array’s capabilities is very ineffi-
cient. There are two evident approaches to reduce the computation time:

1. modifying the algorithm,

2. using advanced techniques to parallelize the algorithm.

While approach one requires detailed knowledge of the physical base of the algorithm, and may
not lead to success without further restrictions to the algorithm, state-of-the-art computer offer
partially easy-to-apply tools to parallelize algorithms. Fortunately, because of the plain structure
of the beamforming algorithm described with the three independent ”for” loops, approach two
can be applied easily. The resulting algorithms for parallelization on CPU and GPU and the
results in reducing the computational effort are described in the next two sections. Nevertheless,
Sec. 3.4 introduces an algorithmic modification of Alg. 1 leading to a reduced computational
effort, but, as said before, in combination with further constraints.

2In this case, constant sampling frequency and varying object velocity

5



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

550 5500 55000
0

2

4

6

·105

Number of pixel N

To
ta

lc
om

pu
ta

tio
n

tim
e

/s

Figure 1: Computation time for digital time-
domain beamforming depending on
number of pixels N

22 76 110 170
0

2

4

6

·104

Object velocity / km/h

To
ta

lc
om

pu
ta

tio
n

tim
e

/s
Figure 2: Computation time for digital time-

domain beamforming depending on
object velocity

3.2 Parallelization on CPU

Today, one of the most convenient means of reducing the computational effort for algorithms
is parallelizing on a computer’s Central Processing Unit (CPU). There is a great variety of
tools and programming libraries supporting the programmer to parallelize. For instance, the
commercial numerical computation program Matlab offers an easy-to-use toolbox for paral-
lelization. This toolbox uses the special command ”parfor” to simply parallelize ”for” loops.
By this mean, existing algorithm implementations can easily be modified to reduce computation
time.

Basically, parallelization on a CPU is achieved by splitting a process to be executed in a
certain number of threads, that will be executed in parallel. The threads’ underlying tasks to
perform have to be independent, otherwise parallelization is more complicated or may even not
be possible in some cases. Opposite to former CPU architectures only having one processing
unit (core), advanced CPUs offer more than one core, in state-of-the-art processors even up to
six cores. While parallelization in the first case would not lead to any reduction in computa-
tion time, because of the serial execution of threads, using multiple cores can. In this case,
the threads are indeed executed in parallel. Thus, the computation time with Ncore cores can
theoretically be reduced to the 1/Ncoreth part.

Observing the time-domain beamforming algorithm in Alg. 1 from the parallelizational point
of view, it offers two main approaches to parallelize on a CPU:

1. Parallelizing the outer loop over pixel N, thus a certain number of pixel will be processed
simultaneously.

2. Parallelizing all commands in the outer loop, treating the calculation of pn[k] as one com-
mand (Li. 1 to Li. 8).

6



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

Using the loop over the pixel N for parallelization revealed to be the most efficient approach
(Li. 1 in Alg. 1). The resulting computation time of the parallelized algorithm according to
Alg. 1 with a varying number of threads Nthread shows Fig. 3. The results were created by an
implementation with the programming language C by using the compiler extension OpenMP
for parallelization. To get results being independent from the CPU type used for evaluation
(clock speed, architecture, ...), the results are normalized to the serial algorithm’s computation
time. Using one thread for parallelization, which means only one pixel n is processed at the

Serial 1 2 4
0

20

40

60

80

100

Threads

C
om

pu
ta

tio
n

tim
e

pa
ra

lle
l

C
om

pu
ta

tio
n

tim
e

se
ri

al
/%

Figure 3: Computation time for digital time-
domain beamforming depending on
the number of threads for parallel
implementation on CPU according
to Alg. 1

GTX 570 FX 3800
0

5

10

15

20

Graphics card

C
om

pu
ta

tio
n

tim
e

pa
ra

lle
l

C
om

pu
ta

tio
n

tim
e

se
ri

al
/%

Figure 4: Computation time for digi-
tal time-domain beamform-
ing for parallel implemen-
tation on GPU according to
Alg. 2

same time, leads, of course, to the same computation time like the serial implementation. With
increasing number of threads, the computation time decreases. When two pixel n are calculated
in parallel, the computation time is halved, processing four pixel n simultaneously quarters
the computation time. Certainly, using more threads will further decrease the computation
time. But this is only efficient when using CPUs with the same number of cores as threads
used. But, depending on the CPU’s architecture, the gap between the theoretical reduction by
Nthread and the measured reduction will grow due to effects like memory bandwidth or memory
access collisions, thus limiting the efficiency of parallelization. Modern PC architectures try to
overcome this problem by using more then one multi-core CPUs or using new technologies like
Intel’s Hyperthreading.

3.3 Parallelization on GPU

In 2001, the first NVIDIA graphics card from the Geforce 3 Series was capable of being almost
freely programmed, caused by the graphics card’s very specific architecture becoming more
flexible. Since that day, the graphics card metamorphosed from a device, only applied to 2D- or

7



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

3D-graphics applications, to a device for General Purpose Computation on Graphics Processing
Units (GPGPU). With the introduction of NVIDIA’s CUDA (Compute Unified Device Archi-
tecture) in 2006, which allows programmers to use NVIDIA graphics cards for GPGPU, this
technology became very famous and has been applied in a great variety of applications. Be-
cause of the graphics processing units (GPU) applying the principle of array processors, which
means executing the same command on many identical processors on various data, they offer
much potential for massive parallel calculations. By using millions of parallel threads, an op-
timal workload can be achieved. For instance, the advanced graphics card NIVIDIA Geforce
GTX 570 has 480 processors, is actually used in gaming applications, but can also be applied
to GPGPU using CUDA. In comparison to GPUs, CPUs are designed for fast serial processing
of commands and can be programmed more flexible than GPUs, thus offering less capabilities
for parallelization.

But the high potential on parallel programming involves, because of the GPU’s architecture,
some restrictions on programming. In general, transferring algorithms directly to the graphics
card for parallelization is thus not possible - algorithms need to be modified, demanding more
effort than parallelizing on CPU. NVIDIA’s CUDA technology is widely used, and has also
been applied in the work presented. CUDA uses the concept of partitioning the problem in
small problems, called kernels. Therefor, the algorithm to be parallelized has to be divided in
small kernels which are executed on much data at the same time.

As described in Sec. 3.1, the digital time-domain beamforming’s algorithmic structure is not
very sophisticated. Thus, it can easily be modified to fulfill the demands for parallelization on
graphics card, but offers only few variations. In [2], a frequency-domain and a time-domain
beamformer have successfully been brought to the graphics card, substantiating the potential of
parallelizing beamforming on the graphics card.

Applying the kernels concept to Alg. 1 results in Alg. 2 for parallelization on the graphics
card. The basic structure of the algorithm did not change. The following four kernels were
introduced:

1. Li. 5: Kernel to reconstruct the source signal pn[k] for Ncalc pixel for time interval
[le,n, lx,n].

2. Li. 11: Kernel to window the reconstructed source signal before analyzing with DFT.

3. Li. 13: Kernel to calculate the frequency spectrum Pn by applying DFT3.

4. Li. 15: Kernel for octave band filtering and sound pressure level calculation Lp,oct,n.

Ncalc is the number of pixels calculated in parallel to allow an optimal work load for the graphics
card, depending on the graphics card’s properties. It is determined before the algorithm starts
(Li. 1) and can be calculated with a tool supplied by NVIDIA. Because the number of pixel N
of the acoustic map is greater than Ncalc, the kernels are executed serially N/Ncalc times. As
mentioned before, an optimal work load of the graphics card is achieved when a high number
of calculation threads is started. For instance, the kernel in Li. 5 is executed in Ncalc ·L threads,
which means that the time steps l for Ncalc pixel are calculated in parallel. The same approach
is also applied in the cases of the other kernels.

3using Fast Fourier Transform

8



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

Algorithm 2 was implemented using CUDA in the programming language C. It has been
tested on the state-of-the-art graphics card NVIDIA Geforce GTX 570 for personal computer
and on the five years old NVIDIA Quadro FX 3800 mainly used in work stations. The two
cards mainly differ in their architecture and the number of CUDA cores available (GTX 570:
480 cores, FX 3800: 192 cores).

Figure 4 shows the computation times normalized to the serial algorithm executed on the
CPU. Compared to the serial implementation, the computation time could be reduced to almost
four percent. Thus, parallelizing on the graphics card offers much more potential than on the
CPU. Although, as the results in Fig. 4 clearly show, the computation time highly depends on
the graphics card used. When using the older graphics card FX 3800, the reduction achieved is
only twenty percent compared of serial implementation on CPU.

Algorithm 2: Digital time-domain beamforming, parallel implementation on GPU

Data: microphone signals pm[k]
Result: acoustic map An,oct

1 determine Ncalc
2 for j = 0 to N/Ncalc do
3 for n = 0 to Ncalc do
4 initialize pn = 0

5 foreach tuple (n, l) with n ∈ {Ncalc}, l ∈ [le,n, lx,n] do in parallel
6 for m = 0 to M−1 do
7 calculate am,n[l], bm,n[l] and ∆km,n[l]
8 calculate pm,n[l]
9 add pm,n[l] to pn[l]

10 divide pn[l] by M

11 foreach n ∈ {Ncalc} do in parallel
12 window pn[k]

13 foreach n ∈ {Ncalc} do in parallel
14 calculate Pn for pn[k]

15 foreach n ∈ {Ncalc} do in parallel
16 calculate Lp,oct,n from Pn
17 assign Lp,oct,n to An,oct

3.4 Beamfactors

As mentioned before, the beamforming algorithm explained in Sec. 2 is mainly applied to the
sound source localization on trains. In the majority of train measurements, the train moves hor-
izontally along the microphone array with negligible motion in other directions. Furthermore,
assuming the train is passing with constant velocity, algorithmic simplifications to Alg. 1 can

9



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

Algorithm 3: Digital time-domain beamforming using beamfactors, serial and parallel im-
plementation on CPU

Data: microphone signals pm[k]
Result: acoustic map An,oct

// Calculate beamfactors
1 for i = 0 to Ny−1 do
2 for l = 0 to lx,i− le,i +1 do (in parallel)
3 calculate am,i[l], bm,i[l] and ∆km,i[l]

// Do beamforming
4 for i = 0 to Ny−1 do (in parallel)
5 for j = 0 to Nx−1 do
6 calculate n = j ·Nx + i
7 initialize pn = 0
8 for l = le,n to lx,n do
9 for m = 0 to M−1 do

10 set l∗ = l− le,n
11 calculate pn[l] with am,i[l∗], bm,i[l∗] and ∆km,i[l∗]

12 divide pn[l] by M

13 window pn[k]
14 calculate Pn for pn[k]
15 calculate Lp,oct,n from Pn
16 assign Lp,oct,n to An,oct

be made. The distance rm,n[k] between pixel n and microphone m, used to determine the in-
terpolation coefficients and time delays (see Eq. (6), Eq. (7) and Eq. (8)), has the same shape
for every pixel in a row of the evaluation grid. More precisely, rm,n[l] evaluated over the time
period l ∈ [le,n, lx,n] can be affiliated to a basic function common to all pixels in a row. Thus,
the interpolation coefficients, am,n[k] and bm,n[k], and time delays, ∆km,n[k], only have to be cal-
culated once for all microphones and time steps l, and can be applied to reconstruct the source
signal pn[k] to all pixel of a row in the evaluation grid. These precomputed factors are called
”beamfactors” and were actually introduced in [3].

Involving the beamfactors to the digital time-domain beamforming algorithm leads to Alg. 3.
As described above, the interpolation coefficients and time delays for all pixel in a row are
precomputed (Li. 1 to Li. 3) before reconstructing the source signals. Thus, the necessary
calculation steps in the inner loop in Alg. 1 Li. 4 are reduced. Because of the inner loop being
executed N ·L times, precomputing the beamfactors leads to a great reduction in computation
time, although the algorithm’s order O(N ·L ·M) did not change.

Furthermore, the beamforming algorithm using beamfactors was parallelized on CPU and
GPU as well, using the same approaches as described in Sec. 3.2 and Sec. 3.3. The resulting
algorithm for the parallelization on CPU is shown in Alg. 3, with the loops in Li. 1 and Li. 4

10



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

being executed in parallel. The algorithm for GPU parallelization is omitted, but can easily be
derived from Alg. 2.

To assess the algorithmic simplifications and their influence on computation time, the algo-
rithm using beamfactors has initially been executed serially on CPU. Without parallelization,
using beamfactors leads to a reduction in computation time of one third of the original algo-
rithm executed serially. Because the interpolation coefficients and time delays are only cal-
culated once for every row Ny, the necessary operations in the inner loop are thus reduced by
Ny · (Nx−1).

Using parallelization techniques reduces the computation time further. As Fig. 5 shows,
the more threads used on CPU, the less the computation time. For instance, executing the
beamforming algorithm with beamfactors on CPU with four threads, decreases the computation
time to about 9 percent compared to the serial implementation, which is on fourth of the non-
parallelized algorithm. The resulting computation times for the parallelized algorithm on GPU
are summarized in Fig. 6. Analogous to the results in Alg. 3, the computation time can be
decreased to about 5 percent of the serial’s algorithm without beamfactors on the advanced
graphics card GTX 570.

Serial 1 2 4
0

10

20

30

Threads

C
om

p.
tim

e
pa

ra
lle

l,
be

am
fa

ct
or

s
C

om
p.

tim
e

se
ri

al
,w

ith
ou

tb
ea

m
fa

ct
or

s
/%

Figure 5: Computation time for digital time-
domain beamforming using beam-
factors, serial and parallel imple-
mentation on CPU

GTX 570 FX 3800
0

5

10

15

20

25

Graphics card

C
om

p.
tim

e
pa

ra
lle

l,
be

am
fa

ct
or

s
C

om
p.

tim
e

se
ri

al
,w

ith
ou

tb
ea

m
fa

ct
or

s
/%

Figure 6: Computation time for digital time-
domain beamforming using beam-
factors, parallel implementation on
GPU

4 SUMMARY

This article mainly focused on comparing different approaches to computationally optimize the
time-domain beamforming algorithm presented in [3]. Applying the original implementation to
evaluate a regular microphone array measurement took many hours, reducing the microphone
array’s efficiency and thus its potential as sound analyzing tool.

11



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

1 2 3 4 5
0

5

10

15

20

25

30

C
om

pu
ta

tio
n

tim
e

C
om

p.
tim

e
se

ri
al

,w
ith

ou
tb

ea
m

fa
ct

or
s

/%
Parallel CPU (4 Threads)
Parallel GPU
Beamfactors
Beamfactors Parallel CPU (4 Threads)
Beamfactors Parallel GPU

Figure 7: Comparison of computation time for the approaches described in Sec. 3.2 to Sec. 3.4

As the starting point, the fundamental equations of the beamforming algorithm were de-
scribed in Sec. 2, followed by an examination of the algorithms structure in Sec. 3.1. The two
main platforms which exist to parallelize algorithms, were applied to the beamforming algo-
rithm.

The parallelization on CPU, described in Sec. 3.2, revealed to be the most effortless approach
and leads to very satisfying results. Depending on the number of threads used for the calcu-
lations, the computation time can be reduced to one fourth of the serial’s computation time
on regular PCs (see Fig. 7). Even more can be achieved on workstations with more advanced
CPUs. Despite the possible reduction in computation time, referring back to the example listed
in Sec. 1, using four threads decreases the evaluation time to 1.5 h in this case. The results are
little surprising and well known since the introduction of CPU parallelization techniques.

Modifying the beamforming algorithm for parallel calculations on GPU, results in a great
reduction in computation time. The results presented in Sec. 3.3 substantiated the GPU’s poten-
tial for parallel calculations. Although there are a couple of constraints associated with parallel
programming on the GPU, which causes much more effort for implementation, the very high
reduction in computation time is worth it. Seizing the example in Sec. 1 again, the computation
time is now decreased to about 5 min. Using a more powerful graphics card than the Geforce
GTX 570 used for the investigation will lead to further reductions.

The algorithmic modification of the time-domain beamforming algorithm ”beamfactors” de-
scribed in Sec. 3.4, revealed to be a powerful algorithmic improvement. Although, associated
with certain constraints, which are satisfied by regular microphone array measurements on mov-
ing trains with known velocity, a high reduction in computation time without parallelization is
achieved. Parallelizing the algorithm on CPU and GPU leads to further reductions.

The results presented are the base for further work. It was a first attempt to optimize the
evaluation/computation time of the time-domain beamforming algorithm used. The capabilities
of parallelization on CPU and GPU were examined, revealing that the graphics card is the most
powerful tool. Compared to the computation time of all other approaches presented, summa-
rized in Fig. 7, parallelizing the time-domain beamforming algorithm on the GPU leads to the

12



5th Berlin Beamforming Conference 2014 Stier, Hahn, Zechel and Beitelschmidt

highest reduction in computation time. Although beamfactors on GPU were less efficient than
the pure beamforming algorithm, the algorithmic improvements of beamfactors showed to have
a lot potential on reducing the computation time when used on CPU. Probably, further modifica-
tions in the GPU implementation of beamfactors will lead to a higher reduction of computation
time than presented.

REFERENCES

[1] D. H. Johnson and D. E. Dudgeon. Array Signal Processing: Concepts and Techniques. P
T R Prentice-Hall, Inc., 1993.

[2] C. Nilsen and I. Hafizovic. “Digital beamforming using a gpu.” In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, (ICASSP), pages
609–612. 2009. ISSN 1520-6149. doi:10.1109/ICASSP.2009.4959657.

[3] G. Zechel, A. Zeibig, and M. Beitelschmidt. “Time-domain beamforming on moving ob-
jects with known trajectories.” In Proceedings of the 3rd Berlin Beamforming Confer-
ence. Berlin, Germany, 2010. URL http://bebec.eu/Downloads/BeBeC2010/
Papers/BeBeC-2010-12.pdf.

13

http://bebec.eu/Downloads/BeBeC2010/Papers/BeBeC-2010-12.pdf
http://bebec.eu/Downloads/BeBeC2010/Papers/BeBeC-2010-12.pdf

	1 Introduction
	2 Time-Domain Beamforming for Moving Sources
	3 Computational Optimization
	3.1 Digital Time-Domain Beamforming from the Computational Point of View
	3.2 Parallelization on CPU
	3.3 Parallelization on GPU
	3.4 Beamfactors

	4 Summary

