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ABSTRACT

Compressive sensing (CS) is a newly emerging method in information technology that
could reduce sampling efforts extensively by conducting L1 optimization. In this work,
CS is extended to array beamforming applications and two algorithms (CSB-I and CSB-II)
are presented with the assumption of spatially sparse and incoherent sound sources. The
two algorithms are examined using both simulation and aeroacoustic experiments. The
simulation case clearly shows that the CSB-I algorithm is quite sensitive to the sensing
noise. The CSB-II algorithm, on the other hand, is more robust to noisy measurements.
In addition, aeroacoustic tests of an airplane model demonstrate the good performance in
terms of resolution and sidelobe rejection of CSB-II algorithm.

1 INTRODUCTION

Compressive sensing [2, 4–6, 15], a new signal processing strategy from the field of information
technology, reduces sampling efforts extensively by conducting L1 optimization. This paper will
apply this idea to beamforming techniques [17] that visualize signal of interest as measured by
a sensor array. Potential applications can be found in acoustics [1, 7, 10, 13, 14, 18].

Recently, some compressive sensing based beamforming methods have been developed for
direction-of-arrival estimation problem [8, 12]. The first paper demonstrated in numerical sim-
ulations that only a few samples are required compared with conventional beamforming. Com-
pressive sensing beamforming was also applied to undersea data, manipulating the sensing ma-
trix to maintain a stable calculation [8]. Most works in the literature use uniformly linear array
[8, 12] and are examined only by simulation data. Aeroacoustic testing, on the other hand, uses a
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different array layout. Aeroacoustic experiments performed in wind tunnel and anechoic cham-
ber jet facility usually contain strong background noise at broadband frequencies. These issues
from the specific application impose challenges to compressive sensing based beamforming.

This article will present a novel compressive sensing beamforming method and apply it to
an aeroacoustic problem. It was verified using both simulated data with various signal-to-noise
ratios (SNR) and measured aeroacoustic test data. The rest of the paper is organized as follows.
In Section II, this algorithm is briefly introduced. Then, in Section III, validation results with
both simulation and acoustic experiment are presented and discussed. Finally, the work is
summarised in Section VI.

2 COMPRESSIVE SENSING BASED BEAMFORMING

2.1 Wave model

Given a sensory array with M microphones, the output y(t) denotes time domain measurements,
y = (y1 . . .yi . . .yM)T ∈ RM×1 and (·)T stands for transpose. For a single signal of interest
x(t) ∈R1 in a free propagation space, using the associated Green’s function, we can have

y(t) =
1

4πr
x(t− τ),τ =

r
C
, (1)

where C is the propagation speed; r ∈RM×1 are the distances between x(t) and sensors; and τ

is the related sound propagation time delay.
For practical applications, beamforming is generally conducted in the frequency domain. The

frequency domain version of Eq. (1) is:

Y( jω) =
1

4πr
X( jω)e− jωτ = Gv(r, jω)X( jω), (2)

where j =
√
−1; Gv ∈ CM×1 is the associated steering vector; ω is angular frequency; ( jω)

and (r, jω) are omitted in the following for brevity; Y and X are in the frequency domain. For
simplicity, we can write Eq. (2) as Y = GvX . The subscript (·)v suggests that Gv is a vector.

The situation becomes more complicated for multiple signals of interest plus measurement
noise. For clarity, the array output is represented in the scalar form,

Y1
...

Yi
...

YM

=


G11 . . . G1k . . . G1N

...
Gi1 . . . Gik . . . GiN

...
GM1 . . . GMk . . . GMN




X1
...

Xk
...

XN

+


N1
...

Ni
...

NM

 , (3)

where Gik is the steering vector between the i th sensor and the k th signal of interest; Yi( jω) is
the i th sensory measurements; Xk( jω) is the k th signal of interest; and Ni( jω) is the collective
measurement noise of the i th sensor. Potential noise sources include background interference
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and electronic noise during data acquisition. For brevity, Eq. (3) can be written as

Y = GmI X+N, (4)

where GmI ∈RM×N is the associated matrix of steering vectors; and X ∈ CN×1 and N ∈ CM×1.
Generally, it is assumed that SX and N are of zero-mean and statistically independent. In this
work, we define the SNR of the k th sensor in decibels, as the following,

SNRdB = 10log10

(
|∑N

i=1 GikSi|2

|Ni|2

)
, (5)

where the variables are the same as those in Eq. (3).

2.2 Compressive sensing

Candes et al. [5] proposed that a perfect reconstruction of a discrete-time signal σ ∈ C N using
sub-Shannon sampling rates is possible, as long as σ is sparse in some Hilbert basis ψ ∈C N×N ,
that is, σ = ψα,α ∈ C N . The so-called sparsity means that the number of nonzero entries in α

is pretty small, i.e. ||α||0� N.
According to compressive sensing theory, we can perform a small number of measurements

to collect y = φσ , where y ∈ C K and the sensing matrix φ ∈ C K×N , in the form of underdeter-
mined linear equations. The sparse signal can then be reconstructed from those K projections
by solving an L1 regularization optimization [5],

arg min ||α̂||1,subject to φψα̂ = yi, i = 1, ...,K, (6)

where ˆ(·) represents the recovered estimation.
For those measurements polluted by some noise, a closely related programming with an error

constraint should be adopted, as the following

arg min ||α̂||1,subject to ||y−φψα̂||2 ≤ δ ,δ > 0. (7)

In this work, δ is empirically chosen according to the corresponding SNR.
The above programming can be resolved using any available convex optimization tools, such

as CVX [3]. Once α̂ is achieved, the original signal σ can be straightforwardly recovered as
ψα̂ . The reconstruction error is negligible with a high probability if

K >Ck ·M · log(N/M), (8)

where Ck is a universal constant that directly determines the accuracy of the optimization out-
comes. A small Ck, such as 2, could work if the mutual coherence between φ and ψ is small.
Random projections for φ is thus recommended in the literature for their general incoherence
with respect to most fixed transformation basis ψ .
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2.3 Compressive sensing based beamforming

To the best of our knowledge, beamforming work based on compressive sensing is rarely applied
to practical applications as yet. Because the only way to validate an algorithm is to apply it for
practical applications, the main contribution of this work fills the gap, developing compressive
sensing based beamforming algorithms for one of aeroacoustic applications.

In this work, signals of interest are presumably regarded as spatially sparse. The same as-
sumption has been adopted in the literature [11] for bearing estimation. Then, by checking with
Eq. (7) and Eq. (4), we can simply propose a straightforward algorithm of compressive sensing
based beamforming,

arg min ||Ŝ||1,subject to ||Y−GmI Ŝ||2 ≤ δ ,δ > 0, (9)

where δ is empirically assigned according to the corresponding SNR, and δ = 0 if the mea-
surements are free of noise (i.e., SNR = ∞). In addition, the beamforming results are generally
represented by signal power. Then, the estimated signal power is

PCSB−I = ||Ŝ||2. (10)

For convenience, this compressive sensing beamforming is denoted by CSB-I in the following.
In this work, we developed a new compressive sensing beamforming algorithm based on so-

called cross spectrum matrix (also known as covariance matrix or cross-spectral density matrix).
The definition is

R = E{YY∗} , (11)

which can be approximated by

R̂≈ 1
K

K

∑
k=1

YY∗, (12)

where K is the number of sampling blocks. For statistical confidence, the associated sampling
duration should be much larger than the the period of signal of interest.

The associated algorithm is called CSB-II throughout this article. Its derivation is as the
following. From Eq. (3), we have

RV =


G11G∗11 G12G∗12 . . . G1NG∗1N
G11G∗21 G12G∗22 . . . G1NG∗2N

...
GM1G∗M1 GM2G∗M2 . . . GMNG∗MN

P+Q = GmII P+Q, (13)

where RV = (E[Y1Y ∗1 ],E[Y1Y ∗2 ], · · · ,E[YMY ∗M])T ∈ CM2×N is a vector that can be approximately
achieved by reshaping R̂ [Eq. (12)]; the symbol of (·)∗ denotes the conjugate transpose; P =
[S1S∗1,S2S∗2, · · · ,SNS∗N ]

T ∈ RN×1, where Si and Sk (i 6= k) are incoherent; and Q is the vertical
vector form of E[NN∗] ∈ CM2×1. Then, the proposed CSB-II algorithm works by solving

arg min ||P̂||1,subject to P̂ > 0, ||R̂V −GmII P̂||2 ≤ δ ,δ > 0. (14)
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As a result, the estimated signal power is

PCSB−II = P̂. (15)

In summary, both the algorithms developed in this work are started by,
Step 0: Collect measurements and obtain Y by performing Fourier transform.
Then, the CSB-I algorithm is conducted as the following,
Step 1: Prepare GmI using Eqs. (2)–(4).
Step 2: Calculate the CSB-I beamforming with Eqs. (9)–(10). Done.
On the other hand, the steps of the CSB-II algorithm include
Step 1: Prepare GmII using Eq. (13).
Step 2: Prepare RV by reshaping R̂ that is calculated with Eq. (12).
Step 3: Perform l1-minimization and achieve the CSB-II beamforming results, using

Eqs. (14)–(15). Done.

3 RESULTS AND DISCUSSION

A simulation case was conducted firstly to quantity the performance of the proposed algorithms.
In the simulation, we assume free space propagation for a monopole 5kHz sources that locates
at the origin, 1m away from the array. For this simple case, we just use 10 microphones,
which are randomly chosen in the array, to yield the beamforming results. In addition to this
sound signal, we assume that each sensor also perceive a white noise, which could come from
background noise or electronic noise.

Various SNR levels, from ∞ to −10dB, have been tested. According to Eq. (5), SNR = ∞

suggests a negligible noise; SNR = 0dB suggests that the power from the monopole signal
equals the power from the background noise; and SNR =−10dB suggests that the power of the
background noise is ten times greater than the power of the monopole signal.

Figures 1(a-b) show the normalized beamforming results using the CSB-I algorithm. The
dynamic range of the CSB-I results is more than 100dB and those data smaller than −100dB
is cut off for clarity of the figures. In Fig. 1(a), the simulated measurements are free of back-
ground noise (i.e., SNR = ∞). It can be seen that the CSB-I algorithm perfectly capture the
desired signal with very fine resolution and nice sidelobe rejection. However, as the value of
SNR decreases, we found that the CSB-I algorithm fails to output reasonable results. For exam-
ple, when SNR =−10dB, Fig. 1(b) shows that false signal sources scatter on the entire imaging
domain. In contrast, Fig. 1(c) shows that the CSB-II algorithm is still able to capture the main-
lobe as well as maintain a good sidelobe rejection. The dynamic range is however diminished
to 60dB that is still quite satisfactory.

Figure 1(d) examines the x-axial performance on the dashed line, which has been shown in
Fig. 1(b). In comparing CSB-I and CSB-II algorithms with conventional beamforming (CB),
the following expression is used,

σCB = W∗R̂W,W = (G∗vGv)
−1Gv. (16)

The above CB algorithm is narrowband and only for a single gridpoint. We have to scan each
gridpoint of the imaging plane using this algorithm to yield the desired images at frequency
ranges of interest. It can be seen that the CB algorithm produces a very broad mainlobe. The
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Figure 1: Beamforming results of the monopole case at 5kHz, where: (a) SNR = ∞, CSB-
I; (b) SNR = −10dB, CSB-I; (c) SNR = −10dB, CSB-II; and (d) the x-axial only
performance, (−−) the CB result for SNR =−10dB, (�) the CSB-I result for SNR =
∞, (�) the CSB-I result for SNR = −10dB, and (◦) the CSB-II result for SNR =
−10dB. The contour levels in (a-c) are set between −100dB and 0dB. The levels
below −100dB are cut off.

associated dynamic range is slightly over 10dB. Then, Fig. 1(d) clearly identify the distinctive
performance of CSB algorithms, in terms of the resolution and dynamic range. In addition,
the CSB-II algorithm can suppress detrimental interference of noisy measurements to some
extent. In this very simple case with an idealized monopole source, the CSB-II algorithm fails to
produce correct results if SNR is smaller than −15dB. On the other hand, the CSB-I algorithm
fails quickly when SNR is just 0dB. As a result, only the CSB-II algorithm is applied in the
following practical test.

Test data achieved in our previous experiments is used to demonstrate compressive sensing
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beamforming methods. The experiments were conducted in lined wall closed-section wind
tunnel at Aerodynamics Research Institute, AVIC. The maximum flow speed in the test section
could reach 130 m/s and the associated Reynolds number is 8.5× 106. The test section of the
wind tunnel is 4.5m ×3.5m ×11m (width × height × length).

A 1/12 scaled model of the commercial transport aircraft, Modern Ark 60 (MA-60), manu-
factured from aluminum is tested to evaluate the new aeroacoustic treatments of the wind tunnel
with lined wall (see Fig. 2). The angle of attack, α , of the model can be modified during tests.
Various aerodynamic setups have been tested in this experiment and the evaluation of the aeroa-
coustic treatments of the closed-section wind tunnel is presented in another paper. In this paper,
the condition, the angle of attack α is 6 deg when the wind speed is 40 m/s, is considered in the
validation of CSB-II algorithm.

(a) (b)

Figure 2: A 1/12 scaled model of the commercial transport aircraft (MA-60) was installed in
the lined test section of a closed wind tunnel, where (a) the photo taken in the test
section, and (b) the ceiling view of the experimental setup.

An array consisting of 110 channels of Brüel and Kjær 4954 microphones is mounted on the
ceiling of the test section (see Fig. 2(a)) to acoustically ‘visualize’ flow-induced noise sources.
The layout of the microphones is a multi-arm spiral line, which is de facto adopted in acoustic
tests. The microphones are recessed by almost 2 mm beneath the Kevlar cloth to suppress
boundary layer interference [9, 16]. The frequency response of each microphone is carefully
calibrated to maintain perfect array performance.

Most compressive sensing works are validated using simulation results. Very few beamform-
ing results from compressive sensing can be found in the literature for practical experimental
data. It should be interesting to apply the proposed method to practical aeroacoustic test data.
The CSB-II result is compared to that obtained with the CB algorithm. Figure 3 shows results
at 4kHz when the wind speed is 40 m/s. The contour levels are between −10dB and 0dB for
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Figure 3: Acoustic images at 4 kHz, 40 m/s, (a) using conventional beamforming algorithm;
(b) using CSB-II algorithm.
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Figure 4: Comparison of SPL on the line shown in Fig. 3.

the CSB-II method, while for the CB method, the dynamic range could only reach 6 dB. It
needs to be mentioned that, the SPL levels have been normalised with the maximum level in the
scanning area. In addition, Figure 4 shows the SPL level on the line along the wing marked in
Fig. 3.

Compared to the CB results, the CSB-II results have a better resolution (with narrow main-
lobes) and smaller sidelobe levels. In short, the imaging quality is improved with the proposed
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compressive sensing based beamforming method.

4 SUMMARY

Compressive sensing is the newly emerging method in information technology that could signif-
icantly impact acoustic research and applications. In this article, we firstly introduced the funda-
mentals of compressive sensing theory. After that, we implemented two different compressive
sensing based beamforming algorithms (CSB-I and CSB-II). Both algorithms are proposed for
those presumably spatially sparse and incoherent signals.

The two algorithms are examined using a simple simulation case and a practical aeroacoustic
test case. The simulation case clearly shows that the CSB-I algorithm is quite sensitive to the
sensing noise. The CSB-II algorithm, on the other hand, is more robust to noisy measurements.
The results by CSB-II at SNR = −10dB are reasonable with good resolution and sidelobe re-
jection. Although the inherent reason is not discussed in this work, we believe it has connection
with the so-called restricted isometry property [5]. Detailed analysis id beyond the scope of this
paper.

The proposed method was then successfully evaluated and demonstrated in the numerical
simulations. The sound source considered in the simulation case is an idealised monopole. Few
results for practical experimental data can be found in the literature. This work develops com-
pressive sensing based beamforming algorithms specifically for aeroacoustic tests and applies
it to the practical data in an effort to fill this gap. The CSB-II algorithm is applied to exper-
imental data acquired in a lined wall closed-section wind tunnel. The results suggest that the
proposed CSB-II algorithm is robust to potential interference in practical tests, and can produce
an acoustic image with a significant improvement of resolution.
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