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ABSTRACT

Recently deconvolution-based methods, like the DAMAS, have greatly improved spa-
tial resolutions of the Beamforming in aeroacoustic imaging. But most of existing meth-
ods are not robust to background noise. In this paper, we propose two robust super-
resolution approaches using Sparsity Constraint (SC-RDAMAS) and Sparse Regularisa-
tion (SR-RDAMAS) respectively to simultaneously estimatesource powers and positions,
and the variance of background noise. In proposed SC-RDAMAS, sparsity constraint on
source power is obtained by considering eigenvalue distributions of observed covariance
matrix. When sparsity constraint is hard to determine in strong noise interference, pro-
posed SR-RDAMAS applyingℓ1 regularisation with proper regularisation parameter can
greatly improve resolutions and robustness of proposed SC-RDAMAS. Moreover, pro-
posed SC-RDAMAS can work well even if the source number is over-estimated, but our
SR-RDAMAS does not require source number at all. Proposed methods are shown to be
robust to noise, wide dynamic range, super resolution and feasibility to use for near-field
wideband extended source imaging based on 2D non-uniform microphone array by sim-
ulated and wind tunnel data. Our methods are compared with the state-of-art methods:
Beamforming, DAMAS, Diagonal Removal DAMAS, DAMAS with sparsity constraint,
Covariance Matrix Fitting and CLEAN.

1 INTRODUCTION

Aeroacoustic imaging is a standard technique for mapping the location and strength of aeroa-
coustic sources with microphone arrays. It provides insight into noise generating mechanisms,
which is used for designing quieter vehicles and machinery.In this paper, we aim to investigate
near-field wideband aeroacoustic imaging of vehicle surface in wind tunnel test based on the
2D Non-Uniform microphone Array (NUA). State-of-art methods are studied and applied in in-
dustry. Beamforming method is fast and simple, but suffers from high sidelobes and its spatial
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resolutions are limited especially at low frequencies. MUltiple SIgnal Classification (MUSIC)
improves resolutions, but highly depends on theSNRand source number. Though the Near-field
Acoustic Hologram (NAH) provides good resolution over entire frequency band, but it is limited
by hologram size and can not work well with sparse array. The CLEAN [8] iteratively extracts
strong sources from a beamforming image, but it could not separate weak sources from severe
background noise. The Deconvolution Approach for Mapping of Acoustic Source (DAMAS)
method [2] becomes a breakthrough, but it is sensitive to noise and requires large number of
iterations. The DAMAS2 and DAMAS3 accelerate the DAMAS by using invariant point spread
function, which inevitably harms resolutions. Theℓ1-Singular Value Decomposition (SVD) [4]
is proposed to reduce computational complexity and to improve robustness to noise, but it re-
quires the source number to obtain signal subspace. The CMF method with sparsity constraint
[11] is robust to noise, but is not feasible to use due to huge dimensionality of variables. Most
of classical methods suffers at least one of these drawbacks: poor spatial resolutions, sensitive
to background noise, need for source number and high computational cost.

In order to overcome most of these drawbacks, the main idea ofproposed approaches is to
exploit the sparsity of source spatial distributions. And novelties in this paper are firstly to mod-
ify the original DAMAS method to account for background noise, and then introduce sparsity
constraint on source power to obtain higher resolutions, and finally apply sparse regularization
and select proper regularization parameter to enforce sparsity constraint and obtain super res-
olutions in poor SNR. The advantages of proposed approach are robust to background noise,
super-resolved imaging and applicable to use in wind tunnelexperiments with 2D NUA array.

This paper is organized as follows. In Section 2, aeroacoustic imaging formation and its
classical inverse solutions are briefly introduced. We thenpropose the SC-RDAMAS and SR-
RDAMAS approaches respectively in Section 3. Section 4 demonstrates performance compar-
isons on simulated and real data. Finally we conclude the paper in Section 5.

2 FORMULATION OF AEROACOUSTIC IMAGING

2.1 Assumptions

Four necessary assumptions are made: Sources are punctual,temporally uncorrelated; noise is
Additive Gaussian White Noise (AGWN), independent and identically distributed (iid); sensors
are omnidirectional with unitary gain; and reverberationscould be negligible in the anechoic
wind tunnel.

2.2 Forward propagation model

ConsiderM antenna sensors andK near-field wideband sourcess∗ = [s∗1, · · · ,s
∗
K]. And the

scanning plane consists ofN (N >> M > K) scanning pointss( f ) = [s1( f ), · · · ,sN( f )]T at
positionsp = [p1, · · · ,pN]

T with pn being 3D coordinate of the pointn. Each scanning point
could be regarded as a potential source. The total snapshotsT0 measured by each sensor is
divided intoT segments, where each segment consists ofL snapshots. Each segment is then
converted intoL narrow frequency bins by Fourier Transform. Thus for the segmenti ∈ [1,T]
and single frequencyfl , l ∈ [1,L], the observed vectorzi( fl) = [zi1( fl), · · · ,ziM( fl )]T at antenna
array is modeled:

zi( fl ) =A(p, fl)si( fl )+ei( fl) (1)
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whereei( fl) is AGWN noise vector at antenna array, andA(p, fl) = [a(p1, fl), · · · ,a(pN, fl )]
is M×N near-field steering matrix, with steering vector:

a(pn, fl ) = [
1

rn,1
e− j2π fl τn,1, · · · ,

1
rn,M

e− j2π fl τn,M ]T (2)

whereτm,n is the propagation time from the sourcen to antennam, andrn,m is the propagation
distance duringτm,n. Actual rn,m andτn,m should be corrected according to the refraction in the
wind tunnel as discussed in Section 4.

2.3 Classical inverse solutions

Near-field beamforming

For the given locationpn and single frequencyfl , the steering vectora(pn, fl ) is short asan.
An estimate of the source poweryn locating at the scanning pointn can be obtained by the
beamforming as:

yn =
ãH

n R̂ãn

‖ãn‖2 (3)

where operator(·)H denotes the conjugate transpose;‖ · ‖ is vector norm; and the beamforming
coefficientãn is:

ãn = [rn,1e− j2π fl τn,1, · · · , rn,Me− j2π fl τn,M ]T (4)

and the estimation of observed covariance matrixR is R̂ = 1
T ∑T

i=1zi( fl)zi( fl )H ; andR is
modeled as

R= E{zi( fl)zi( fl )
H}=AXAH +σ2I (5)

whereσ2 is noise variance;I is the identical matrix; operatorE{·} denotes mathematical ex-
pectation; andX = E{ssH} is source correlation matrix, withx = diag(X) standing for un-
correlated source power vector.

DAMAS [2] and its improved methods

When total snapshot segment is large enoughT >> 1, we getR̂ ≈R. By neglecting noise in
Eq.(5), the DAMAS [2] method is deduced into:

y =Cx (6)

wherex= [x1, · · · ,xN]
T ; y = [y1, · · · ,yN]

T , and power transferring matrixC has the coefficient

cn,q =
‖ãH

n aq‖
2

‖ãn‖2 with n,q= 1, · · · ,N, andcnn= 1 for anyq= n. Its iterative non-negative solution
is:

x̂n = yn−

[

n−1

∑
q=1

cnqx̂q+
N

∑
q=n+1

cnqx̂q

]

, x̂n ≥ 0 (7)

The DAMAS is a powerful technique to deconvolve the beamforming result and successfully
used by the NASA of USA. However, its biggest drawback is not robust to noise pollution.
Thus several extended methods have improves the robustnessof the DAMAS. Diagonal removal
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DAMAS [2] constrainsdiag{R̂} = 0 to suppress the noise interference, but it harms the weak
sources; instead of deconvolving the beamforming result, the CMF with sparsity constraint [11]
directly estimates both observed covariance matrixR and noise varianceσ2, but its variables
matrix are much larger than those of the DAMAS, so the CMF converges much slower.

3 PROPOSED APPRAOCHES

3.1 Robust DAMAS model

Taking into account of background noise in Eq.(5), we get robust DAMAS model as follows:

y =Cx+σ21N (8)

where1N = {1, · · · ,1}N×1. To ameliorate the robustness, noise variance should be estimated.
To obtain high resolutions, we apply the sparsity of source spatial distributions: aeroacoustic
sources sparsely lay out on the scanning plane, and the source number is much fewer than
scanning grids.

3.2 SC-RDAMAS

Based on the robust DAMAS, we propose the SC-RDAMAS approachto solve Eq.(8):
{

min
x,σ2 J (x,σ2) = ||y−Cx−σ21N||

2
2

s.t. x� 0,‖x‖1 ≤ β ; σ2 ≥ 0
(9)

Whereβ represents total source power. Ifβ is too large, the result would be more dispersed
than expected; if too small, some weak sources would be lost.A technique [10] to determine
β is to normalize each column of the steering matrixA. So thatA satisfiesdiag(AHA) = 1N.
Thus total power of uncorrelated sources isTr(X)=Tr(XAHA) =Tr(AXAH), whereTr(·)
denotes matrix trace. Thusβ = Tr(AXAH) is regarded as total source power. SinceR is
Hermitian,R can be diagonalized into

R=UΛUH (10)

whereU is the unitary matrix, whose columns are eigenvectors ofR, andΛ is a diagonal
matrix, whose diagonal values are eigenvalues ofR, with diagonal itemsλ1 ≥ λ2 ≥ ·· · ≥ λK ≥
λK+1 = · · · = λM = σ2, whereK is the actual source number. According to Eq.(5), we then
have

Tr(R) = Tr(AXAH +σ2I) = Tr(UΛUH) = Tr(Λ) (11)

Thusβ is modeled by
β = Tr(AXAH) = Tr(Λ−σ2I) (12)

In practice,β is estimated by
β̂ = Tr(Λ̂− σ̂2I) (13)
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whereΛ̂ is defined byR̂ = Û Λ̂ÛH . For simplicity,σ̂2 = min{λm,m= 1, · · · ,M} [10]; for a
better initialization [11],

σ̂2 =
1

M− K̂

M

∑
m=K̂+1

λm (14)

whereK̂ is the estimated source number.
In proposed SC-RDAMAS approach, we apply the property of eigenvalue distribution to

estimateK. Let λ (m) with m = 1, · · · ,M denote the eigenvalue distribution ofR, defined
by the M diagonal items ofΛ, with λ1 ≥ λ2 ≥ ·· · ≥ λK ≥ λK+1 = · · · = λM = σ2. Since
λ (m) is a non-increasing function, the second-order derivatived

′′λ (m) describes the change
of decreasing rate ofλ (m). From certain pointK̂, the change approaches zero (d

′′λ (K̂) ≈ 0).
Thus K̂ can be regarded as the estimation ofK. This conclusion could be explained by the
sparsity fact thatΛ has much fewer number of source powers (2KlM << N) than that of noise
powers who are not greatly distinct from each other (for AWGNnoise, noise power is the
same); therefore the curve of eigenvalue distribution has ashort and steep head, and a long and
smooth tail, which are illustrated in Fig.1 for simulated and real data respectively. Figure 2a
reveals the influence of estimated source number in proposedSC-RDAMAS. Under-estimation
of source number (̂K < 9) significantly affects the power image reconstruction error δ2, but
over-estimation (̂K > 13) does not affect at all, since proposed SC-RDAMAS can estimate the
noise variance and makeδ2 relatively small.
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(a) 5 uncorrelated monopole sources atSNR= 0dB
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Figure 1: Eigenvalue distributionλ (m), first-order (−d
′λ (m)) and second-order (−d

′′λ (m))
derivatives (from ceiling to bottom) at 2500Hz, y-axisλ (m), x-axis m= 1, · · · ,M.

3.3 SR-RDAMAS

In very poor SNR cases, sparsity constraint (β ) is not easily to determine according to Eq.(13).
To enforce the sparsity constraint, proposed SR-RDAMAS approach combinesℓ1 regularization
with the Least Mean Square (LMS) criterion as follows:

{

min
x,σ2 J (x,σ2) = ||y−Cx−σ21N||

2+α||x||1
s.t. x� 0; σ2 ≥ 0

(15)
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In Eq.(15), theℓ1 regularization offers more information of sparse distribution prior than the
sparsity constraint in Eq.(9) of proposed SC-RDAMAS, especially when the forward model
of Eq.(8) is severely interfered by noises. Proposed SR-RDAMAS approach offers the iterative
non-negative LMS solutions withℓ1-norm regularization for the system of linear equations. The
associated inverse algorithm is a convex quadratic programwhich can be solved efficiently.

For regularization parameter,α is selected by using Bayesian interpretation. The paper [5]
argued thatα should be proportional to the inverse of the SNR. And [3] indicated thatα =
σ
√

2log(M) with M being the number of antenna. In proposed SR-RDAMAS,α is selected by
minimizing the power image reconstruction errorδ2 as follows:

α = argmin
α

δ2(α) (16)

whereδ2(α) = ‖x̂(α)−x‖2
2/‖x‖

2
2 is relative error of power image reconstruction between

original imagex and estimated image ˆx. And δ2 measures the estimation performances and
sparsity state. In Fig.2b,α ∈ [−10,−5]dB ([0.1,0.3]) is a proper value region for the proposed
SR-RDAMAS, and since proposed SR-DAMAS can well estimate noise variance,δ2 is rela-
tively small even when small value ofα is selected. Moreover, source number in proposed
SR-RDAMAS is not necessary any more as proposed SC-RDAMAS.
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Figure 2: Source number estimation̂K in proposed SC-RDAMAS and selection of regularization
parameterα in proposed SR-RDAMAS based on simulations in Section 4

Both proposed SC-RDAMAS in Eq.(9) and SR-RDAMAS in Eq.(15) are the convex
quadratic minimization under linear matrix constraints, which can be solved by interior point
methods using MATLAB toolbox SeMuDi [9].

3.4 Wideband estimation

In wind tunnel experiment, aeroacoustic sources are generated by frictions between the vehicle
and wind flow. Physically, different vehicle parts produce vibrations with different frequencies.
Therefore aeroacoustic sources are near-field wideband signals. Consider the frequency range
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[ fmin, fmax] consisting ofL frequency bins. Let ˆx( fl ) be the estimation ofx( fl) in l th frequency
bin. Then source powersxwb over wideband[ fmin, fmax] can be estimated by

x̂wb=
1
L

fmax

∑
fl= fmin

x̂( fl) (17)

4 SIMULATIONS AND REAL DATA

In this section, our proposed approaches are compared with some of the state-of-art methods
for near-field wideband extended sources imaging on simulated and real data respectively. The
simulations and experiments use the same configurations as follow. There are 64 2D NUA array
on vertical plane, whose averaging array aperture isd = 2m with longer horizontal aperture, as
shown in Fig.3a. For NUA array, it yields almost the same performance as the uniform array
with more sensors does as discussed in [6]. The distance between source plane and array is
aroundR= 4.50m, thus the beamforming resolution atf = 2500Hz is ∆B≈ λR/d= 31cm. For
scanning step, we choose∆x= 5cm to satisfy∆x/∆B< 0.2 for any f < 3500Hz, which avoids
the spatial aliasing in the DAMAS [2]. The propagation speedis c0 ≈ 340m/s. Results are
illustrated by decibel (dB) images and section profiles.

4.1 Extended sources

An aeroacoustic monopole is the source who radiates isotropically in all directions. Any source
whose dimensions are much smaller than its wavelength will act as a monopole. An extended
source is loosely defined as a source consisting of some spatially separated and temporally
uncorrelated monopoles. In contrast, a coherent source is made up of correlated monopoles
who have a constant phase difference between each other. Though coherent sources are the
ideal model to simulate real directivity patterns, it is time-consuming to estimate both source
amplitudes and positions, as well as the correlation function as discussed in [1]. Therefore,
extended sources with various patterns are used to simulatedirectivity patterns of actual sources.

4.2 Simulations

On simulations, the scanning region is 85×135cm2 and there areT0 = 10000 snapshots at the
array. In Fig.4a, there are 4 monopoles and 5 extended sources with different patterns; their
powers are 0.08∼ 2 (−10.27dB∼ 3.7dB) with 14dB dynamic range. The noise isσ2 = 0.85
(−0.7dB), and averagingSNR= 0dB.

The results are shown in Fig.4. The Beamforming just gives few strong sources, since its
resolution atf = 2500Hz is ∆B≈ λR/d = 31cm. The DAMAS and SC-DAMAS are sensitive
to the noise. The DR-DAMAS eliminates the noise interference and well estimate the extended
source, but fails to detect weak monopole sources. The CMF well estimates the noise variance,
and obtains better spatial resolutions. However, it loses some of weak sources, and does not
well reconstruct the extended sources. The proposed SC-RDAMAS and SR-RDAMAS work
much better than the above methods. They not only better estimate the noise variance, but also
better estimate positions and powers of all monopoles and extended sources. From Table 1
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and 2, averaging estimation error∆x∗ clearly shows that our SC-RDAMAS and SR-RDAMAS
approach outperform mentioned classical methods.

(a) Wind tunnel S2A [7]. (b) Overlook and wind tunnel effect.

Figure 3: Configurations of wind tunnel S2A.

Table 1: Power estimation of monopoles and averaging estimation error ∆x∗ = 1
K ∑K

k=1 |x̂
∗

k−

x∗k| with real source powerx∗ = diag{E[s∗Hs∗]}.

Source powers 0.08 0.18 0.98 0.50 ∆x∗ δ2

Beamforming 1.57 11.28 3.51 2.02 4.16 121.93
DAMAS 0 0 0 0 0.44 1.33
SC-DAMAS 0 0 0 0.65 0.35 0.51
DR-DAMAS 0 0 0.77 0.23 0.19 0.10
CMF 0.09 0 0.80 0.40 0.12 0.04
SC-RDAMAS 0.09 0.10 1.05 0.43 0.06 0.02
SR-RDAMAS 0.08 0.13 0.94 0.45 0.05 0.015

4.3 Real data

Figure 3 shows configurations of wind tunnel S2A [7]. The scanning region is 135×470cm2.
There areT0 = 524288 snapshots,T = 204 segments. Wideband is 2400Hz− 2600Hz with
B= 21 frequency bins. The results are shown by normalized dB images with 10dB span. For
corrections of propagation timeτn,m and distancern,m, we apply equivalent source that antenna
mseems to receive the signal from equivalent sourcen′ along a direct linedn′,m during the same
propagation timeτn′,m, as if there is no wind influence, as shown in Fig.3b.

For regularization parameter selection in proposed SR-RDAMAS on real data, we use hybrid
data by adding synthetic sources to the real data, then regularization parameter is determined
according to Eq.(16). Five synthetic extended sources withdifferent patterns are generated as
seen in the Fig.5a, whose total powers are from−4.5dB to 0dB.
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Table 2: Power estimation of extended source, SNR= 0dB.

Source powers 2.00 2.00 2.00 2.00 2.00 2.00 ∆x∗

Beamforming 2.64 9.60 9.70 9.64 11.34 9.77 6.78
DAMAS 4.50 1.25 0.48 2.54 0.49 1.88 1.15
DR-DAMAS 2.15 2.05 1.82 1.83 2.50 1.45 0.27
SC-DAMAS 2.29 0.66 2.75 2.06 0.86 2.34 0.65
CMF 1.36 2.86 2.07 2.09 1.92 1.05 0.45
SC-RDAMAS 1.83 2.00 2.05 1.72 2.16 1.95 0.12
SR-RDAMAS 1.94 1.99 1.98 1.76 2.10 1.91 0.09

For aeroacoustic imaging on the car side, the Fig.5 illustrates the normalized estimated power
images of various methods at 2500Hz with the span 10dB. The beamforming merely gives the
fuzzy image of strong sources around the front wheel, the rearview mirror and the back wheel, as
seen in Fig.5b; in Fig.5c, the DAMAS well deconvolves the beamforming image, and discovers
weak sources on the front light, front cover, the top antennaand side windows; however it also
gets many false targets on the air; the DR-DAMAS eliminates most of the false targets, but
it also harms weak sources, as shown in Fig.5d; the Fig.5e shows that the CLEAN overcomes
drawbacks of the DAMAS, but unexpected strong points are detected on the ground; in contrast,
the proposed SC-RDAMAS not only suppress the noise interference and obtain more precise
positions and power levels than the above methods, but also discovers all the strong sources and
most of the weak sources, as demonstrated in Fig.5f; since the sparsity constraint is determined
by real source number̂K = 20 as seen in Fig.1b, Figure 5g shows the acceptable result obtained
by SC-RDAMAS on real data ; finally, the Fig.5h reveals that our SR-RDAMAS achieves the
best performance of all for synthetic source estimations and the noise suppression on the profiles
of wheels and mirrors; and proposed SR-RDAMAS also removes most of the false targets under
the cars and on the air; the regularization parameter is selected asα = 0.1 according to the
Eq.(16) with the help of synthetic sources. Therefore Fig.5i gives an expected result achieved
by proposed SR-RDAMAS on real data.

Wideband data

Based on the effectiveness and feasibility at single frequency, we compare the proposed ap-
proaches with the DR-DAMAS and the CLEAN for the near-field wideband data of 2400−
2600Hz, as Fig.6 illustrated. Each method obtains a better result than the correspondent one at
2500Hz in Fig.5, since the real sources are enforced and the flashingfalse targets are suppressed
over the wideband average. The estimations of the DR-DAMAS in Fig.6a are reasonable and
acceptable, but the spatial resolutions are not high enoughon the front wheel and rearview
mirror; Fig.6b shows that the CLEAN greatly ameliorates theresolutions, but holds some unex-
pected points under the car body; the proposed SC-RDAMAS in Fig.6c has the advantages of
the CLEAN, and it gets wide dynamic range of source powers around the front wheel, but not
sparse enough; finally, our SR-RDAMAS in Fig.6d enforces thesparse state and extracts more
accurate source positions and powers, both for the strong sources around the front wheel and
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the weak ones on the mirror and back wheel.

5 CONCLUSION

In this paper, we propose two robust super-resolution approaches with sparsity constraint (SC-
RDAMAS) and sparse regularization (SR-RDAMAS) for near-field wideband aeroacoustic ex-
tended source imaging in poor SNR situations. We firstly modify the original DAMAS method
to account for background noise, and then introduce sparsity constraint on source power to ob-
tain higher resolutions, and finally apply sparse regularization and select proper regularization
parameter to enforce sparsity constraint and obtain super resolutions in poor SNR. In the pro-
posed SC-RDAMAS, sparsity constraint on source power is applied by using the eigenvalue
distributions; based on the SC-RDAMAS, proposed SR-RDAMASapplies theℓ1 regularization
with selection of regularization parameter to enforce the sparse constraint and achieve super
spatial resolution. Moreover, proposed SC-RDAMAS can workwell even if the source number
is over-estimated, but our SR-RDAMAS does not require source number at all. The advantages
of our method are robust to noise interference, wide dynamicrange of estimated powers, su-
per spatial resolutions and feasible to use in the wind tunnel tests based on 2D non-uniform
microphone antenna array. The effectiveness and feasibility of proposed methods are verified
by comparison with the state-of-art methods: the Beamforming, DAMAS, DR-DAMAS, SC-
DAMAS, CMF and CLEAN. Our methods are applicable in the monopole and extended source
imaging on simulated and real data offered by Renault SAS. Toselect sparser priors and adap-
tively estimate hyper-parameter (forward model parameters, prior model parameters etc.), we
are investigating a Bayesian inference approach.
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(a) 5 extended source with 4 monopole sources.
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(b) Beamforming
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(c) DAMAS with 5000 iterations
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(d) DR-DAMAS with 5000 iterations
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(e) SC-DAMAS
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(f) CMF, σ̂2 ≈ 0.89
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(g) Proposed SC-RDAMAS,̂σ2 ≈ 0.84
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(h) Proposed SR-RDAMAS,̂σ2 ≈ 0.85

Figure 4: Simulation on extended sources, realσ2 = 0.85, SNR= 0 dB, imaging at2500Hz.
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(a) Synthetic sources with different forms.
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(b) Beamforming on hybrid data.
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(c) DAMAS on hybrid data.
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(d) DR-DAMAS on hybrid data.
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(e) CLEAN on hybrid data.13



4th Berlin Beamforming Conference 2012 CHU, DJAFARI and PICHERAL

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

−10

−8

−6

−4

−2

0

(f) SC-RDAMAS on hybrid data.
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(g) SC-RDAMAS on real data
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(h) SR-RDAMAS on hybrid data.
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(i) SR-RDAMAS on real data

Figure 5: Results on hybrid data and on real data, imaging at2500Hz.
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(a) DR-DAMAS
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(b) CLEAN
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(c) proposed SC-RDAMAS
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(b) proposed SR-RDAMAS

Figure 6: Wideband data over[2400,2600]Hz, 10dB span
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