'On the Role of Beamforming in Technical Acoustics', or: Purpose and parameters of phased arrays (microphone antennas)

M. Möser

November 10, 2006

Contents

1	Purposes and applications of phased arrays	2
	1.1 Source location and identification	3
	1.2 Improvement of signal to noise ratio	7
	1.3 Fundamental solution: The line-array	15
2	Weights and windows (beamforming)	24
	2.1 Role of specific window	25
	2.2 Construct your own window!	29
	2.3 Role of calibration	30
3	Layout of array geometry	31
	3.1 Sensor distribution along a line	31
	3.2 Sparse 2D arrays: cross and circle arrays	36
	3.3 'Dense' 2D arrays: quadratic array	46
4	Alternative beamforming method: 'modern' spectral estima-	-
	tion	55
	4.1 The 'all-zeros' (MA) approach	55
	4.2 The 'all-poles' (AR) approach	58
	4.3 How to estimate the amplitudes	64
5	Summary	65

Purposes and applications of phased arrays

1.1 Source location and identification

Example 1: Factory

Fig. 1.1: Some 'noisy' environment in front of a plant (courtesy from GFaI)

Example 2: Motorcompartment

Fig. 1.2: Sources inside a motor compartment (courtesy from GFaI)

Example 3: Train passby

Fig. 1.3: Sound sources from a train passby (courtesy from Akustik-Data)

Fig. 1.4: Sound sources from a van passby (courtesy from Akustik-Data))

1.2 Improvement of signal to noise ratio

Typical situation for measurements in cities

Fig. 1.5: Measurement of the sound from a train passby next to a street

Fig. 1.6: Sound reducing headpiece (SSI: Sound Screen Improver) on a wall (near Innsbruck)

Fig. 1.7: Layout of SSI (from 'top')

Fig. 1.8: Layout of SSI (from 'side')

Fig. 1.9: Layout of SSI (from below when mounted)

Fig. 1.10: Intensity flow (in dB) near a rigid (above) and an ideal elastic (zero-pressure, below) headpiece

Calculation of MEASURED improvement $\Delta L(meas)$ for true improvement ΔL and signal-to-noise-ratio S:

$$\Delta L = 10 \lg \left(1 + 10^{-S/10} \right) - 10 \lg \left(10^{-\Delta L/10} + 10^{-S/10} \right)$$

Fig. 1.11: Measured improvement $\Delta L(meas)$ versus signal-to-noise-ratio for different true improvements ΔL

Summary Desired is an instrument 'listening' in a certain, adjustable direction:

Fig. 1.12: Principle of desired directivity pattern)

Directivity pattern should have small mainlobe for source location and high sidelobe-mainlobe-distance for high S/N-ratio

1.3 Fundamental solution: The line-array

Fig. 1.13: Array setup and sensor signal delay for the algorithm 'delay and sum'

Fig. 1.14: Directivity pattern for a 'short' signal (normal incidence, principal sketch), N=number of sensors

Fig. 1.15: Directivity pattern for a 'short' signal (oblique incidence, principal sketch), N=number of sensors

Fig. 1.16: Measured directivity pattern for a pure tone (normal incidence, $\Delta x/\lambda = 0.125$, N=25)

Fig. 1.17: Measured directivity pattern for a pure tone (normal incidence, $\Delta x/\lambda = 0.25$, N=25)

Fig. 1.18: Measured directivity pattern for a pure tone (normal incidence, $\Delta x/\lambda = 0.5$, N=25)

Fig. 1.19: Wavenumber spectrum calculated from the microphone signals. Directivity pattern = some distorted interval of wavenumber spectrum

Fig. 1.20: Colorplot (like a photo) of the array output $\Delta x/\lambda = 0.5$, normal incidence (N=25)

Fig. 1.21: Colorplot (like a photo) of the array output $\Delta x/\lambda = 0.5$, oblique incidence (N=25)

Weights and windows (beamforming)

In principle: wavenumber spectrum is calculated from the (complex) amplitude sequence

 \mapsto Technique of 'weights and windows' for time series can be applied to 'form the beam' and to manipulate the 'mainlobe-sidelobe-distance'

Examples: Rectangular (see before), Hanning, Dolp-Chebyshev (and others: for example Kaiser-Bessel, Flat-Top, Hamming)

Fig. 2.1: Wavenumber spectra for rectangular and for Hanning (\cos^2) window (N=25)

Fig. 2.2: Wavenumber spectra for rectangular and Dolph-Chebyshev window (N=25)

Fig. 2.3: Dolph-Chebyshev window itself (N=25, distance=50 dB)

Fig. 2.4: Wavenumber spectra for different Dolph-Chebyshev windows

2.2 Construct your own window!

Form of wavenumberspectrum always is fixed by the distribution of zeros: \mapsto Choosing a zeros pattern allows to install a certain desired structure of mainlobe-width and mainlobe-sidelobe-distance

2.3 Role of calibration

Uncalibrated array output = sum of 'true' amplitude series and spatially white noise

Fig. 2.5: Wavenumber spectrum for calibrated (red) and for uncalibrated (blue) array. Dolph-Chebyshev window used with mainlobe-sidelobe-distance = 30 dB (mean calibration error 1 dB)

Layout of array geometry

Fig. 3.1: Setup of exponential array

Fig. 3.2: Colorplot of the EXPONENTIAL array output $\Delta x/\lambda = 0.125$, normal incidence (N=25)

Fig. 3.3: Colorplot of the EQUIDISTANT array output $\Delta x/\lambda = 0.125$, normal incidence (N=25)

Fig. 3.4: Colorplot of the EXPONENTIAL array output $\Delta x/\lambda = 0.25$, normal incidence (N=25)

Fig. 3.5: Colorplot of the EQUIDISTANT array output $\Delta x/\lambda = 0.25$, normal incidence (N=25)

Fig. 3.6: Setup of cross array

Fig. 3.7: Colorplot of the cross array output $\Delta x/\lambda = 0.5$, normal incidence (N=25)

Fig. 3.8: Colorplot of the cross array output $\Delta x/\lambda = 0.5$, oblique incidence (N=25)

Fig. 3.9: Colorplot of the cross array output $\Delta x/\lambda = 0.5$, normal incidence (N=25), low range displayed

Fig. 3.10: Colorplot of the cross array output $\Delta x/\lambda = 0.5$, oblique incidence (N=25), low range displayed

Fig. 3.11: Setup of circle array

Fig. 3.12: Colorplot of the circle array output $\Delta x/\lambda = 0.5$, normal incidence (N=25)

Fig. 3.13: Colorplot of the circle array output $\Delta x/\lambda = 0.5$, oblique incidence (N=25)

Fig. 3.14: Colorplot of the circle array output $\Delta x/\lambda = 0.5$, normal incidence (N=25), low range displayed

Fig. 3.15: Colorplot of the circle array output $\Delta x/\lambda = 0.5$, oblique incidence (N=25), low range displayed

3.3

Fig. 3.16: Setup of quadratic array

Fig. 3.17: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, normal incidence (N=25)

Fig. 3.18: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, oblique incidence (N=25)

Fig. 3.19: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, normal incidence (N=25), low range displayed

Fig. 3.20: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, oblique incidence (N=125), low range displayed

Fig. 3.21: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, normal incidence (N=100)

Fig. 3.22: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, oblique incidence (N=100)

Fig. 3.23: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, normal incidence (N=100), low range displayed

Fig. 3.24: Colorplot of the quadratic array output $\Delta x/\lambda = 0.5$, oblique incidence (N=100), low range displayed

Alternative beamforming method: 'modern' spectral estimation

4.1 The 'all-zeros' (MA) approach

polynomial shape = product of all distances from current point x to all zeros x_i

$$|P(x)| = \prod |x - x_i|$$

Fig. 4.1: Generating polynomial for spectrum of rectangular window

Fig. 4.2: Generating polynomial for spectrum of Hanning window

Principles

'Gap' in zeros pattern models mainlobe Dense zeros result in high mainlobe-sidelobe-distance Sum of single waves is represented by sum of (shifted and attenuated) generating polynomials

4.2The 'all-poles' (AR) approach

Single pole instead of many zeros !!!

Fig. 4.3: Principle of all zeros and all poles approaches

Remarks on all-pole modeling

Pole defined by complex number

Pole-model is a nonlinear estimate for 'true' spectrum

Pole parameters computed from (estimated) autocorrelation function of spatial amplitude sequence

Decomposition (FFT) of time signal into frequencies necessary

Procedures to estimate autocorrelation function

from windowed signal

Burg procedure

forward-backward Burg procedure

and others

Experimental application of all pole modeling to setup consisting in two loudspeakers

Fig. 4.4: Wavenumber spectra for Chebyshev-window (all zeros, D=30 dB, N=25) and all-pole-model (order=2), small source distance

Fig. 4.5: Wavenumber spectra for Chebyshev-window (all zeros, D=30 dB, N=25) and all-pole-model (order=2), larger source distance

Fig. 4.6: Wavenumber spectra for Chebyshev-window (all zeros, D=30 dB, N=25) and all-pole-model (order=2), largest source distance used

4.3 How to estimate the amplitudes

For known wavenumbers (or frequencies): calculation of amplitudes from linear set of equations (overdetermined: minimize mean squared error)

Summary

Phased array is a powerful tool for the detection of sources (and their distribution) and to improve signal-to-noise ratio

Conventional 'Beamforming' techniques use

- window functions and/or
- special layouts of geometrical array shape

Alternatively, nonlinear estimates for wavenumber spectra possible

Optimal solution and arrangement depending on specific application